MEMORANDUM

Date:
May 1, 2018
Project \#: 21001.0
To: Jacob Graichen, City of St Helens
Ken Shonkwiler, Oregon Department of Transportation (ODOT)
From: \quad Matt Bell, Krista Purser, and Chris Brehmer, Kittelson \& Associates, Inc.
Project: St Helens Riverfront Connector Plan
Subject: Existing Transportation System Conditions (Subtask 4.8)

TRANSPORTATION CONDITIONS OVERVIEW

This memorandum documents existing transportation system conditions in the southeast part of St. Helens in support of the St. Helens Riverfront Connector Plan. The information provided in this memorandum is intended to convey an understanding of existing infrastructure as well as opportunities and constraints in improving safety and mobility within the study area. This information is formatted to provide an overview of the study area and available facilities, information regarding known capacity and connectivity limitations, and an initial overview of potential improvement options identified to date. Policy and system planning information presented herein is based on a review of the adopted 2011 City of St. Helens Transportation System Plan (TSP, City Ordinance 3150), the 2015 St. Helens - US 30 \& Columbia Blvd./St. Helens St. Corridor Master Plan (Corridor Plan, City Ordinance 3181), and the Waterfront Redevelopment Plan. Information from the adopted documents is supplemented by additional field data collection, updated information provided by the City and ODOT where noted as well as discussions with the project team.

EXECUTIVE SUMMARY

Key findings of this memorandum are as follows:

- The westbound (non-state) approach to the US 30/Millard Road intersection operates over capacity during the weekday p.m. peak hour. All remaining study intersections currently operate acceptably per the adopted City and ODOT intersection performance standards during the weekday a.m. and p.m. peak hours.
- The locations of access driveways along several study roadways are closer than applicable minimum access spacing standards would otherwise allow, especially within Old Portland Road's residential areas.
- The driveway locations along City street closer than desired were constructed prior to the City adopting access spacing standards in 2011.
- Review of existing pedestrian facilities using a Pedestrian Level of Traffic Stress (PLTS) assessment methodology employed by ODOT found that all study roadway segments are rated with high traffic stress for pedestrians (PLTS 3 or PLTS 4 on a scale of 1 to 4).
- Most of the study roadway segments fall outside the downtown core area and currently lack sidewalk facilities.
- The rankings also reflect factors including pavement in poor condition (where there are no sidewalks), narrow facility widths, and/or a lack of illumination.
- Existing bicycle facilities were assessed using a Bicycle Level of Traffic Stress (BLTS) assessment methodology employed by ODOT, also on a scale of 1 (low stress) to 4 (high stress).
- A relatively short segment of Old Portland Road within the downtown area was ranked BLTS 1 reflecting provision of striped bicycle lanes and a posted 25 miles per hour (mph) speed limit along the roadway.
- Segments along US 30, Old Portland Road, and Gable Road with bicycle lanes are rated high stress (BLTS 4) due to narrow widths and adjacency to relatively highspeed traffic. (30 mph or higher)
- Of the remaining segments rated with high traffic stress (BLTS 3 or BLTS 4), the facilities convey mixed traffic segments with relatively high-speed traffic.
- Local fixed-route, flex route, and dial-a-ride transit service is provided through St. Helens. The South County Flex route currently operates along Old Portland Road.
- The crash history of study intersections and road segments was reviewed to identify potential safety considerations.
- Crash rates at the S $1^{\text {st }}$ Street/St. Helens Street, Port Avenue/Old Portland Road, and Millard Road/US 30 intersections exceed critical crash rates identified by ODOT, suggesting the need for further investigation and consideration as future conditions and improvement options are assessed.
- The Millard Road segment crash rate between McNulty Way and Old Portland Road exceeds the statewide average crash rate for similar facilities, also suggesting the need for consideration of improvements along the facility.
- One fatality was reported midblock on Old Portland Road, approximately 1,300 feet south of its intersection with Gable Road. The fatality report documented a head-on collision attributed to a driver under the influence who was speeding and lost control of the vehicle. No other fatalities were reported in the study area.

This memorandum was reviewed and revised based on input from the project management team (PMT), the Committee Overseeing Overt Long-range Passageway Planning (COOLPPL), and the public during upcoming project meetings.

STUDY AREA

The study area is generally located east of the Columbia River Highway (US 30) and south of Columbia Boulevard. The study area consists of the roadways and intersections that connect US 30 to the Riverfront. This section provides an overview of the study area roadways, intersections, and adjacent land uses. The study area is shown in Figure 1.

STUDY AREA ROADWAYS

The study area roadways include primary and secondary facilities. The primary roadways provide direct access to the Riverfront from US 30 as well as other parts of the City. A large focus of the project is on identifying potential treatments to improve the multimodal environment along the primary roadways. The primary roadways include:

- Gable Road - US 30 to Old Portland Road
- Old Portland Road - Gable Road to Plymouth Street
- Plymouth Street - Old Portland Road to $1^{\text {st }}$ Street
- $1^{\text {st }}$ Street - Plymouth Road to St Helens Street

The secondary roadways provide alternative access to the Riverfront via the primary roadways. The project will also identify potential treatments to improve the multimodal environment along the secondary roadway; however, treatment emphasis is placed on primary facilities. The secondary roadways include:

- McNulty Way from Millard Road to Gable Road
- Millard Road from McNulty Way to Old Portland Road
- Old Portland Road from the City's southern Urban Growth Boundary (UGB) to Gable Road

STUDY INTERSECTIONS

The study intersections were identified to evaluate existing traffic operations and safety at key points along the study area roadways. The study intersections include:

1. St Helens Street/S $1^{\text {st }}$ Street
2. Old Portland Road/Railroad Avenue
3. Old Portland Road/ $/ 8^{\text {th }}$ Street
4. Old Portland Road/Gable Road
5. Old Portland Road/S $12^{\text {th }}$ Street
6. McNulty Way/Gable Road
7. Old Portland Road/Plymouth Street
8. US 30/Gable Road
9. Old Portland Road/S $15^{\text {th }}$ Street
10. US 30/Millard Road
11. Old Portland Road/S $18^{\text {th }}$ Street/S Kaster Road
12. McNulty Way/ Millard Road
13. Old Portland Road/Port Avenue
14. Old Portland Road/ Millard Road

Figure 2 illustrates the existing lane configurations and traffic control devices at the study intersections.

Study Area

Roadway Connectivity

US 30 is the primary roadway connecting St. Helens with the regional roadway network. US 30 is operated and maintained by the Oregon Department of Transportation (ODOT) and is classified by ODOT as both a Statewide Highway and Freight Route. The remaining roadways are operated and maintained by the City of St. Helens. The City classifies its facilities using three functional categories: arterials (major and minor), collectors, and local streets. Exhibit 1 illustrates the City's adopted Functional Classification Plan. A roadway's functional classification reflects its intended purpose, the amount and character of traffic it is expected to carry, the degree to which non-auto travel is emphasized, right-of-way requirements, and the roadway's design standards and overall management approach.

Exhibit 1: Functional Classification Plan

Image Source: St Helens Transportation System Plan, Ordinance 3150

As evidenced by Figure 1 and Exhibit 1, key roadway corridors within the study area include Columbia Boulevard/St. Helens Street, Old Portland Road, and Gable Road. Local connectivity to these key corridors is provided via collector level streets including McNulty Way, Port Avenue, Railroad Avenue, Kaster Road, Plymouth Street, S $15^{\text {th }}$ Street, S $12^{\text {th }}$ Street, S $8^{\text {th }}$ Street, and S $1^{\text {st }}$ Street.

Gable Road Connection

The Gable Road connection between US 30 and the study area is classified as a minor arterial and offers signalized access to US 30. While signalized, the Gable Road/US 30 intersection is relatively congested given its location (currently the southernmost traffic signal on US 30 in the City), surrounding land uses (including several large commercial retailers and St. Helens High School), and the industrial lands within and adjacent to the Port area that it serves. The City's TSP identified a recommended capacity improvement at the intersection involving the addition of a westbound right-turn lane that would also necessitate reconstruction of the adjacent Portland \& Western Railroad (PNWR) railroad crossing. No funding for the turn lane improvement is currently programmed.

Millard Road Connection

Millard Road connects with US 30 at a stop-controlled intersection and links to both McNulty Way as well as Old Portland Road. The current intersection configuration offers limited capacity for additional trips and has been identified for geometric improvements and signalization in the City's TSP. Construction of the geometric improvements and signalization by ODOT is planned to begin in 2019.

Bennett Road Connection

Bennett Road currently connects with US 30 at a stop-controlled intersection to the south of the City's southern UGB. Bennett Road in turn links with Old Portland Road and is used by many as a parallel route to US 30, particularly for those traveling north to St. Helens on US 30. ODOT anticipates implementation of geometric changes at the US 30/Bennett Road intersection in 2019 including:

- Geometric improvements to the northbound right-turn lane onto Bennett Road;
- Elimination of eastbound and westbound left turns onto US 30 from Bennett Road through the construction of a raised median;
- Construction of a U-turn lane on US 30 between Millard Road and Bennett Road; and
- Closure of the existing Old Portland Road southern connection to US 30 (and associated passive railroad crossing).

LAND USE

Adjacent land use designations include Light Industrial (LI) and Heavy Industrial (HI) along McNulty Way and Old Portland Road from the City's southern UGB to Kaster Road. From Kaster Road to S $4^{\text {th }}$ Street, land use designations include General Residential (R5) and Public Land (PL - McCormick Park). Toward S $1^{\text {st }}$ Street and the proposed Plymouth Street extension, land uses include Mixed Use (MU) and Apartment Residential (AR). More information regarding existing and future land use designations is detailed in Technical Memo \#4: Land Use and Urban Design.

PNWR RAILROAD

The PNWR "Portland-Astoria Line" connects the cities of Astoria, Clatskanie, Rainier, Columbia City, St. Helens, and Scappoose with PNWR's facilities and the Burlington Northern Santa Fe Railroad (BNSF) in Portland. The PNWR operates a rail yard in St. Helens east of US 30 that is generally situated north of Gable Road and south of Columbia Boulevard. The rail yard supports local customers served by the railroad, offering a location to stage and switch rail equipment. Trespassing is prohibited, though the yard area is not currently fenced.

Railroad Grade Crossing Terminology

Grade crossings are classified by the type of protection provided and are considered either active or passive. Active crossing systems generally have an electronic train detection system with flashing lights and audible devices that warn the motorist when a train is approaching or at the crossing (they may also have gates). A passive system simply denotes the location of the crossing (typically through signing or pavement markings) and depends on the motorist to detect and yield the right-of-way to the train. Each of the existing PNWR railroad crossings adjacent to US 30 in St. Helens and across Old Portland Road have active crossing systems. The existing grade crossings of McNulty Way, Railroad Avenue (south of Old Portland Road) and other roadways serving the study area are controlled with passive devices.

Grade Crossing Regulation

The ODOT Rail Division regulates all public grade crossings within Oregon and has the authority to eliminate public highway/rail at-grade crossings (ORS Section 824.206). Closure requests can be initiated by ODOT, the railroad or the local jurisdiction. In an effort to make closures more attractive to local communities, ODOT Rail offers assistance in improving intersections at locations near those which can be closed. Because at-grade crossing safety upgrades are expensive, ODOT Rail's approach to closures enables more frequently used crossings to receive the needed safety upgrades. Private railroad crossings are based on an agreement between the railroad and the property owner and are not regulated by ODOT Rail. It appears that some of the at-grade crossings with the Port facilities, including facilities near Old Portland Road and Railroad Avenue, are private railroad crossings.

ROADWAY FACILITIES

Kittelson \& Associates, Inc. (KAI) staff visited and inventoried the study area in November 2017. At that time, KAI collected information regarding study area conditions, adjacent land uses, existing traffic operations, and transportation facilities in the study area. Roadway characteristics, vehicle operations, access spacing, truck routes, and other considerations are described in their respective sections below.

ROADWAY CHARACTERISTICS

Table 1 summarizes the characteristics of roadways within the study area.
Table 1: Existing Transportation Facilities

Roadway	Functional Classification ${ }^{1}$	Number of Lanes	Posted Speed (mph)	Sidewalks	Bicycle Lanes	On-Street Parking
US 30	Major Arterial / Statewide Freight Route ${ }^{2}$	$4-5$ Lanes	$35 / 45^{3}$	West Side	Yes	No
Gable Road	Minor Arterial	2 Lanes	$30 / 40^{4}$	Partial	Partial	No
Old Portland Road	Minor Arterial	2 Lanes	$25 / 30 / 40 / 45^{5}$	Partial	Partial	Partial
Millard Road	Minor Arterial	2 Lanes	$25 / 40^{6}$	No	No	No
McNulty Way	Collector Street	2 Lanes	25	Partial	Partial	No
Railroad Avenue	Collector Street	2 Lanes	30	No	No	No
Port Avenue	Collector Street	2 Lanes	40	No	No	No
S 18 th Street/Kaster Road	Collector Street	2 Lanes	25	No	No	Partial
S 15 ${ }^{\text {th }}$ Street	Collector Street	2 Lanes	25	No	No	Yes
Plymouth Street	Collector Street	2 Lanes	25	No	No	No
S 12th Street	Collector Street	2 Lanes	25	No	No	Yes
S 8 ${ }^{\text {th }}$ Street	Collector Street	2 Lanes	25	No	No	No
S 1 st Street	Collector Street	2 Lanes	25	No	Yes	Yes

1. Per City of St. Helens Transportation System Plan (TSP - Reference 1).
2. Per Oregon Highway Plan (OHP-Reference 2).
3. Speed limit is 35 mph north of Gable Road and 45 mph south of Gable Road.
4. Speed limit is 30 mph west of US 30 and 40 mph east of US 30 .
5. Speed limit is 45 mph from Millard Road to the McNulty Creek bridge, 40 mph from McNulty Creek Bridge to Milton Creek Bridge, 30 mph from Milton Creek Bridge to S $4^{\text {th }}$ Street, and 25 mph from S $4^{\text {th }}$ Street to S $1^{\text {st }}$ Street.
6 . Speed limit is 40 mph west of US 30 and 25 mph east of US 30 .
The US 30/Gable Road and US 30/Millard Road intersections are under ODOT's jurisdiction. All remaining roadways and study intersections are under the City of St. Helens' jurisdiction.

VEHICLE OPERATIONS ANALYSIS

The operational analysis methodology, traffic volumes, jurisdictional operating standards, and existing operations results are described in their respective sections below.

Operations Analysis Methodology

All analyses described in this report were performed in accordance with the procedures stated in the Highway Capacity Manual (HCM - Reference 3). A description of level of service (LOS) and the criteria
by which it is determined is presented in Appendix " A ". Appendix " A " also indicates how level of service is measured and what is generally considered an acceptable range.

All analyses used the peak 15 -minute flow rates that occurred during the weekday morning and evening peak hours. Using the peak 15-minute flow rates ensures that this analysis is based on a reasonable worst-case scenario. For this reason, the analysis reflects conditions that are only likely to occur for 15 minutes out of each average peak hour.

Traffic Volumes and Peak Hour Operations

Turning movement counts were conducted at the study intersections in May 2017. Each of the intersections was assessed during the weekday evening commuter peak hour while only key study intersections were also analyzed during the morning commuter peak hour. All the counts were conducted on a typical mid-week day during the morning (7:00 to 9:00 a.m.) and evening (4:00 to 6:00 p.m.) peak time periods while there was no inclement weather and school was in session. The systemwide morning and evening peak hours were found to occur from 7:15 to 8:15 a.m. and 4:45 to 5:45 p.m., respectively. Figures 3 and 4 summarize the turning movement counts for the weekday morning and evening peak hours. Appendix " B " contains the traffic count worksheets used in this study.

The traffic counts shown in Figure 4 were seasonally adjusted to $30^{\text {th }}$ highest hour volumes (30 HV) in accordance with the Seasonal Trend Table methodology outlined in ODOT's Analysis Procedures Manual (APM - Reference 4). An average of the commuter and summer trends were used to determine the seasonal adjustment factor, resulting in an adjustment of 1.09. This method of seasonally adjusting peak hour volumes is consistent with the methodology used in the TSP and other recent studies conducted within St. Helens.

Jurisdictional Operating Standards and Thresholds

The City of St. Helens requires all signalized and all-way stop controlled intersections to perform at LOS "D" or better and maintain a volume-to-capacity (v/c) ratio at or below 1.0. For two-way stop controlled intersections, LOS " E " is acceptable for the worst approach and LOS " F " when a traffic signal is not warranted.

Per Table 6 of the Oregon Highway Plan, the signalized US 30/Gable Road intersection has a v/c target of 0.85 or below while the unsignalized US $30 /$ Millard Road intersection has a v/c target of 0.80 or below. However, the non-state approach to the US 30/Millard Road intersection has a v/c target of 0.90 or below.

Current Intersection Operations

Figures 3 and 4 summarize the existing traffic volumes and intersection performance analysis. As shown, the stop-controlled Millard Road approach to US 30 operates over capacity during the weekday PM peak hour. All remaining study intersections currently operate acceptably during the weekday a.m. and p.m. peak hours. Appendix " C " includes the worksheets used to evaluate existing traffic conditions at the study intersections.

ACCESS SPACING

ODOT and the City of St. Helens have adopted access spacing standards for the study area roadways.

ODOT Access Management Standards

Access management standards for approaches to state highways are based on the classification of the highway and highway designation, type of area, and posted speed. Within St Helens, the OHP classifies US 30 as a Statewide Highway and a Freight Route. Future developments along US 30 (new development, redevelopment, zone changes, and/or comprehensive plan amendments) will be required to meet the OHP access management policies and standards. Table 2 summarizes ODOT's current access management standards for US 30 per the OHP.

Table 2: ODOT Access Spacing Standards (US 30)

Posted Speed (MPH)	Minimum Spacing Standard (Feet) ${ }^{1}$
≤ 25	520
30 and 35	720
40 and 45	990
50	1,100
≥ 55	1,320

${ }^{1}$ These access management spacing standards do not apply to approaches in existence prior to April 1, 2000 except as provided in OAR 734-0510115(1)(c) and 734-051-0125(1)(c).

City Access Management Standards

The City's access management standards include spacing standards for public streets and private driveways. Table 3 identifies the minimum public street and private driveway access spacing standards for the City's roadway network as they relate to new development and redevelopment. County facilities within the City's Urban Growth Boundary (UGB) should also be planned and constructed in accordance with the City's access management standards.

Table 3: City Access Spacing Standards

Functional Classification	Public Street (feet)	Private Access Drive (feet)
Local Street	150	50
Collector	300	100
Minor Arterial	350 or block length	200 or mid-block

Several existing access points along the study roadways are not in compliance with the access spacing standards. For example, US 30 between Gable Road and Millard Road has accesses approximately every 320 feet, where ODOT spacing standards require at least 990 feet of separation. Within Old Portland Road's residential areas, many existing residential driveways are located 100 to 150 feet apart where the City's current requirements seek a minimum of 200 feet (or a mid-block length) of separation.

TRUCK ROUTES

Designated truck routes were established by the City to limit heavy truck traffic on local streets while connecting the industrial areas within St. Helens to US 30. Exhibit 2 illustrates the designated truck routes within St. Helens. As shown, several of the study area roadways are designated truck routes, including Gable Road, Millard Road, McNulty Way, Old Portland Road, and Plymouth Street.

Exhibit 2: Designated Truck Routes

Image Source: St Helens Transportation System Plan, Ordinance 3150
Currently, many of the truck trips to and from the industrial areas east of US 30 access US 30 at Gable Road because it is signalized. This results in a relatively heavy volume of truck traffic on Gable Road that would otherwise use Old Portland Road to travel further south to US 30 . Turning maneuvers at the at the Gable Road/US 30 signalized intersection are constrained due to the intersection and railroad crossing geometry, constraining maneuvers made by longer trucks (such as power pole delivery trailers) Consequently, alternate routes are utilized. Historically, re-routing reportedly resulted in situations where trucks struck other vehicles as they attempted to negotiate a turn at the Bennett Road/US 30 intersection. Pilot vehicles are currently used to accompany power pole trucks through the intersection to alert other drivers of the wide turning movement.

While large vehicles can generally navigate the designated truck routes, many of the routes have incomplete pedestrian and/or bicycle facilities. Old Portland Road, for example, is a designated truck and bicycle route; however, the roadway has no sidewalks or bicycle lanes south of Gable Road and offers relatively narrow travel lanes. The City's TSP recommends provision of a separate multi-use path along the east side of Old Portland Road in part to reduce interaction with truck traffic.

PEDESTRIAN FACILITIES

This section summarizes the existing physical and operational characteristics of the pedestrian facilities within the study area, including the location of known gaps and deficiencies. This section also summarizes the results of a Pedestrian Level of Traffic Stress (PLTS) analysis that was used to inform future concepts.

EXISTING PEDESTRIAN FACILITIES

Pedestrian facilities within St Helens consists of sidewalks, shared-use paths, and trails as well as marked and unmarked, signalized and unsignalized pedestrian crossings. These facilities provide local residents with the ability to access local retail, commercial, recreational, and other land uses by foot. In order to assess the adequacy of pedestrian facilities, existing sidewalks and crosswalks were inventoried. The following provides a summary of the facilities.

Sidewalks

Sidewalks are currently provided on at least one side of most arterial and collector streets within the study area. Sidewalks are provided along the west side of US 30 from Gable Road to south of Millard Road; along both sides of Gable Road near US 30, along the northwest side of Old Portland Road from Port Avenue to McCormick Park, and; along both sides of McNulty Way adjacent to new development and along both sides of $1^{\text {st }}$ Street from St Helens Street to the southern terminus. There is also a shared-use path along the east side of Old Portland Road from S $4^{\text {th }}$ Street to $\mathrm{S} 15^{\text {th }}$ Street. However, the path is approximately 4 -feet wide, which does not meet minimum width criteria for shared-use paths per the Oregon Highway Design Manual (HDM - Reference 5). Therefore, this path was evaluated as a sidewalk for the purposes of this analysis. Sidewalks are generally not provided along a majority of all other arterial, collector, and local roadways within the roadway. A summary of the gaps and deficiencies in the sidewalk network is provided below.

Crosswalks

Marked crosswalks, pedestrian push buttons, and pedestrian heads are provided at the signalized US 30/Gable Road intersection. A marked crosswalk is provided on the north leg at the signalized Old Portland Road/S $18^{\text {th }}$ Street/S Kaster Road intersection. Marked crossings are provided at St Helens Street's unsignalized intersections with S $4^{\text {th }}$ Street, S $3^{\text {rd }}$ Street, S $2^{\text {nd }}$ Street, and S $1^{\text {st }}$ Street. Midblock marked crosswalks are provided along Old Portland Road approximately 90 feet south of $S 15^{\text {th }}$ Street, 150 feet south of $S 10^{\text {th }}$ Street, and 30 feet south of $S 9^{\text {th }}$ Street. No other marked crossings are provided in the study area.

Shared-use Paths and Trails

As mentioned, there is a shared-use path along the east side of Old Portland Road; however, the path was evaluated as a sidewalk for the purposes of this analysis. There are also several shared use paths and trails within the parks located adjacent to the study area roadways, including McCormick Park, Nob

Hill Nature Park, and Columbia View Park. Several of the paths and trail intersect or abut the study area roadways.

PEDESTRIAN LEVEL OF TRAFFIC STRESS ANALYSIS

The pedestrian facilities located within the study area were evaluated in an effort to identify potential issues that could be addressed as part of the Riverfront Connector Plan. The ODOT APM provides a methodology for evaluating pedestrian facilities within urban and rural environments called Pedestrian Level of Traffic Stress (PLTS). As applied by ODOT, this methodology classifies four levels of traffic stress that a pedestrian can experience on the roadway, ranging from PLTS 1 (little traffic stress) to PLTS 4 (high traffic stress). A road segment that is rated PLTS 1 generally has low traffic volumes and travel speeds and has a sidewalk that is separated from vehicular traffic. These segments are generally suitable for all users, including children. A road segment that is rated PLTS 4 generally has high traffic volumes and travel speeds and is perceived as unsafe by most adults. Road segments rated PLTS 4 also include those with no sidewalks or other pedestrian facilities. Per the APM, PLTS 2 is considered a reasonable target for most pedestrian facilities due to its acceptability with the majority of people.

The PLTS score is based on four criteria, including sidewalk condition, physical buffer type, total buffering width, and general land use. All four criteria are scored from 1 to 4 and the highest score determines the overall score for the road segment. Figure 5 illustrates the results of the PLTS analysis. It is important to note that while some segments are shown as PLTS 3 or 4, they may have shorter segments with lower PLTS scores. Table 4 summarizes the results of the PLTS analysis, which includes the scores for each criteria. As shown, there are 4 road segments rates PLTS 3 and 26 road segments rated PLTS 4.

A majority of the segments rated PLTS 4 have no sidewalks or other pedestrian facilities to accommodate pedestrians. In order for these segments to be rated PLTS 2, sidewalks with appropriate sidewalk and buffer widths would need to be installed along the full length of the roadway.

Of the remaining sidewalks, PLTS 3 or 4 rankings are often due to sidewalks in fair or poor condition; however, they are too narrow and/or do not have illumination present. In order for these segments to be rated LTS 2, the sidewalks would need to be widened to five feet or more and illumination would need to be installed along the full length of the roadway. Several road segments are also rated LTS 3 due to construction with curb-tight sidewalks on roadways with speeds of 30 mph or higher. In order for these segments to be rated LTS 2, the speeds would need to be reduced to 25 mph or a buffer would need to be installed between the sidewalk and vehicle travel lane. For several other segments rated LTS 3, adjusting the LTS score will be difficult because it is controlled by the general land use next to the segment. Appendix " D " contains detailed information on the PLTS analysis results.

Pedestrian Level of Traffic Stress St. Helens, Oregon

Figure 5

Table 4: PLTS Analysis Results

Street	From	To	Side	Pedestrian LTS Criteria Scores				
				Sidewalk Condition	Buffer Type	Buffering Width	Land Use	PLTS
Major Arterial								
US 30	Millard Road	Gable Road	West	2^{1}	2	3	3	3
	Millard Road	Gable Road	East	4	4	3	3	4
Minor Arterial								
Old Portland Road	S $1^{\text {st }}$ Street	S $4^{\text {th }}$ Street	Both	3^{1}	2	1	1	3
	$54{ }^{\text {th }}$ Street	$58{ }^{\text {th }}$ Street	West	4	3	2	1	4
	S 4 ${ }^{\text {th }}$ Street	$58{ }^{\text {th }}$ Street	East	$4{ }^{1}$	2	2	1	4
	$588^{\text {th }}$ Street	S $12{ }^{\text {th }}$ Street	West	4	3	2	1	4
	$58{ }^{\text {th }}$ Street	S 12 ${ }^{\text {th }}$ Street	East	4^{1}	2	2	1	4
	S 12 ${ }^{\text {th }}$ Street	Plymouth Street	West	4	3	2	1	4
	S 12 ${ }^{\text {th }}$ Street	Plymouth Street	East	4^{1}	2	2	1	4
	Plymouth Street	S 15 ${ }^{\text {th }}$ Street	West	4	3	2	1	4
	Plymouth Street	S 15 ${ }^{\text {th }}$ Street	East	4^{1}	2	2	1	4
	S 15 ${ }^{\text {th }}$ Street	S 18 ${ }^{\text {th }}$ Street/ Kaster Road	Both	4	3	2	1	4
	S 18 ${ }^{\text {th }}$ Street/ Kaster Road	Storage Pal Driveway	Both	4	2	2	1	4
	Storage Pal Driveway	Port Avenue	West	2^{1}	2	2	2	2
	Storage Pal Driveway	Port Avenue	East	4	2	2	2	4
	Port Avenue	Gable Road	Both	4	2	2	3	4
	Gable Road	Columbia Drainage Driveway	Both	4	4	2	3	4
	Columbia Drainage Driveway	Millard Road	Both	4	4	2	2	4
Gable Road	McNulty Way	US 30	Both	4	2	2	3	4
	Eastern Walmart Driveway	McNulty Way	Both	4	2	2	3	4
	Old Portland Road	Eastern Walmart Driveway	Both	4	2	2	3	4
Millard Road	Old Portland Road	McNulty Way	Both	4	3	2	3	4
	McNulty Way	US 30	Both	4	2	3	3	4
Collector								
Plymouth Street	Old Portland Road	S 6 ${ }^{\text {th }}$ Street	Both	4	2	2	1	4
McNulty Way	Millard Road	Residential Driveway	Both	4	2	2	2	4

Residential Driveway	PNWR Rail Crossing	Both	4	2	2	2	4
PNWR Rail Crossing	Joint Maintenance Facility Driveway	West	4	2	2	3	4
PNWR Rail Crossing	Joint Maintenance Facility Driveway	East	2^{1}	2	2	3	3
Joint Maintenance Facility Driveway	Industrial Way	West	2^{1}	2	2	3	3
Joint Maintenance Facility Driveway	Industrial Way	East	4	2	2	3	4
Industrial Way	Gable Road	Both	4	2	2	3	4

Shaded cells segments that do not meet the LTS 2 target.

* The effective width of the pedestrian facility is greater than 6 feet. The LTS value is from the last line of the sidewalk condition criteria table in the APM.
${ }^{1}$ No illumination present. LTS reduced by one unless already at LTS 4.
${ }^{2}$ Segment located on a bridge. LTS improved to LTS 3.
${ }^{3}$ Existing non-striped parking. Assume parking area is six to eight feet wide.

PEDESTRIAN ACTIVITY

Pedestrian counts were conducted at the study intersections in May 2017 while school was in session. All of the counts include the total number of pedestrians that entered the intersections in 15 -minute intervals. Table 5 summarizes the pedestrian count data for the study intersections.

Table 5: Peak Hour Pedestrian Crossing Volumes at Study Intersections

	Intersection	North/South Pedestrian Volume	East/West Pedestrian Volume	Pedestrian Peak Hour
1	S 1 ${ }^{\text {st }}$ Street/ St. Helens Street	115	26	6:00 PM
2	S 8 ${ }^{\text {th }}$ Street/ Old Portland Road	1	1	8:15 AM
3	S 12 ${ }^{\text {th }}$ Street/ Old Portland Road	4	4	2:30 PM
4	Plymouth Street/ Old Portland Road	0	0	N/A
5	S 15 ${ }^{\text {th }}$ Street/ Old Portland Road	7	7	2:15 PM
6	S 18 ${ }^{\text {th }}$ Street/ Old Portland Road	6	2	5:45 PM
7	Port Avenue/ Old Portland Road	0	0	N/A
8	Railroad Avenue/ Old Portland Road	0	12	5:00 PM
9	Gable Road/ Old Portland Road	0	8	5:00 PM
10	Gable Road/ McNulty Way	1	3	10:15 AM
11	Gable Road/ US 30	6	31	3:00 PM
12	Millard Road/ Old Portland Road	0	2	3:45 PM
13	Millard Road/ McNulty Way	9	0	2:45 PM
14	Millard Road/ US 30	4	0	3:45 PM

The pedestrian counts show a relatively high level of pedestrian activity at the US 30/Gable Road and the St Helens Street/ $/ 1^{\text {st }}$ street intersections and relatively low levels of pedestrian activity at the other study intersections. It should be noted that while the peak hour for vehicular traffic typically occurs between 4:45 to 5:45 p.m., the peak hour for pedestrian activity near schools and other activity centers typically occurs earlier in the day.

EXISTING GAPS AND DEFICIENCIES

Streets with no sidewalks or intermittent sidewalks generally result in pedestrians walking along the edge of the travel lane or using the shoulder if available. In many cases, this is not a desirable option for pedestrians due to narrow lane widths or uneven pavement conditions. Similarly, streets with no crosswalks or limited crosswalks may result in pedestrians making unsafe or illegal crossings. Ideally, adequate pedestrian facilities should be provided to allow for safe travel between neighborhoods and essential destinations. The following provides a summary of the existing gaps deficiencies in the pedestrian facilities. These gaps and deficiencies were updated based on input from the project team, the advisory committee, and the public throughout the planning process:

- There are several arterial and collector streets that currently do not provide sidewalks along one or two sides of the roadway. These streets include:
- Old Portland Road from S $4^{\text {th }}$ Street to $\mathrm{S} 15^{\text {th }}$ Street - west side
- Old Portland Road from S $15^{\text {th }}$ Street to Millard Road - gaps on both sides
- Gable Road from McNulty Road to Old Portland Road - gaps on both sides
- Millard Road from Old Portland Road to US 30 - gaps on both sides
- Plymouth Street from Old Portland Road to its terminus - gaps on both sides
- McNulty Way from Millard Road to Gable Road - gaps on both sides
- Many sidewalks throughout the City do not provide sufficient width to accommodate pedestrian activity or are in a state of disrepair.
- Many sidewalks and pedestrian ramps throughout the City are not compliant with current American's with Disabilities Act (ADA) design standards.
- There are several major (and minor) intersections that do not provide marked pedestrian crossings.

BICYCLE FACILITIES

This section summarizes the existing physical and operational characteristics of the Bicycle facilities within the study area, including the location of known gaps and deficiencies. This section also summarizes the results of a Bicycle Level of Traffic Stress (BLTS) analysis that was used to inform future concepts.

EXISTING BICYCLE FACILITIES

Bicycle facilities within St Helens consist of on-street bike lanes and shared roadways as well as offstreet bicycle facilities such as bicycle parking and shared-use paths. These facilities provide local residents with the ability to access local retail, commercial, recreational, and other land uses within St Helens and neighboring cities by bike. Safe and convenient bicycle facilities are essential to a vibrant community and economy within the city. In order to assess the adequacy of bicycle facilities, existing shared roadways, shoulder bikeways, on-street bike lanes, and separated bike facilities were inventoried. The following provides a summary of the facilities.

On-Street Bike Lanes

On-street bike lanes are currently provided along both sides of several arterial and collector street within the study area. On-street bike lanes are provided along both sides of US 30 throughout St Helens. On-street bike lanes are also provided on St Helens Street from S $1^{\text {st }}$ Street to S $4^{\text {th }}$ Street, Old Portland Road from S $18^{\text {th }}$ Street/S Kaster Road to Gable Road, Gable Road from Old Portland Road to US 30, and McNulty Way from Industrial Way to 600 feet north of Millard Road.

Shared Roadways

Most of the study area roadways are shared roadways, meaning there are no on-street bike lanes or shoulder bikeways; therefore, bicyclists share the roadway with motorists. The shared roadways include Old Portland Road from S $4^{\text {th }}$ Street to S 18 ${ }^{\text {th }}$ Street/S Kaster Road and from Gable Road to Millard Road; Millard Road from Old Portland Road to US 30; Plymouth Street from Old Portland Road to its terminus, and; McNulty Way from Millard Road to 600 feet north of Millard Road and from the Joint Maintenance Facility driveway to Gable Road.

Separated Bike Facilities

As mentioned, there is a shared-use path along the east side of Old Portland Road; however, the path was evaluated as a sidewalk for the purposes of this analysis. Also, while there are several shared use paths and trails within the parks located adjacent to the study area roadways, including McCormick Park, Nob Hill Nature Park, and Columbia View Park, bikes are not allowed within the parks or on the paths and trails.

BICYCLE LEVEL OF TRAFFIC STRESS ANALYSIS

The bicycle facilities located along the study area were evaluated to identify potential issues that could be addressed as part of the Riverfront Connector Plan. The APM provides a methodology for evaluating bicycle facilities within urban and rural environments called Bicycle Level of Traffic Stress (BLTS). As applied by ODOT, this methodology classifies four levels of traffic stress that a bicyclist can experience on the roadway, ranging from BLTS 1 (little traffic stress) to BLTS 4 (high traffic stress). A road segment that is rated BLTS 1 generally has low traffic volumes and travel speeds and is suitable for all cyclists, including children. A road segment that is rated BLTS 4 generally has high traffic volumes and travel speeds and is perceived as unsafe by most adults. Per the APM, BLTS 2 is considered a reasonable target for bicycle facilities due to its acceptability with the majority of people.

The BLTS score is determined based on the speed of the roadway, the number of travel lanes per direction, the presence and width of an on-street bicycle lane and/or adjacent parking lane, and several other factors. Figure 6 illustrates the results of the BLTS analysis for the study area. It is important to note that while some segments are shown as BLTS 3 or 4 , they may have shorter segments with lower BLTS scores. Table 6 summarizes the results of the BLTS analysis. As shown, there are eight segments rated BLTS 3 and four segments rated BLTS 4.

As shown, the on-street bike lanes along US 30 are rated BLTS 4. These bike lanes are too narrow for roadway conditions per the APM methodology. For these segments to be rated BLTS 2, the bike lanes would need to be widened to 7 feet and the posted speed limits would need to be reduced to as low as 35 mph . Enhanced facilities, such as separated bike facilities or multi-use paths, may be considered as an alternative in areas where traffic volumes and/or travel speeds are high.

Several segments along Old Portland Road and Gable Road that are rated BLTS 4 have bike lanes that are too narrow for the adjacent high-speed traffic per the APM methodology. Bike lanes would either need to be widened to 7 feet and/or the posted speed limit would need to be reduced to as low as 35 mph to achieve a BLTS 2 rating.

All remaining segments that are rated BLTS 3 or 4 are along Old Portland Road in mixed traffic with high-speed traffic. Bike lanes or a separated bike path would need to be provided and/or the posted speed limit would need to be reduced to as low as 25 mph or the centerline stripe would need to be removed to achieve a BLTS 2 rating.

It should also be noted that a majority of the shared roadway segments that were rated LTS 2 could include signage and potentially striping to remind motorists to share the road. The signing and striping can also provide important wayfinding for cyclists to inform them of the preferred bicycle routes.

Bicycle Level of Traffic Stress

St. Helens, Oregon

Figure
6

Table 6: BLTS Analysis Results

Street	From	To	Side	Facility Type	LTS Criteria					Bicycle LTS
					Speed (MPH)	Lanes per Direction	Bike Lane Width (feet)	Parking	Frequent Blockage	
Major Arterial										
US 30	Millard Road	Gable Road	West	Bike Lane	45	2	<7	No	No	4
	Millard Road	Gable Road	East	Bike Lane	45	2	<7	No	No	4
Minor Arterial										
Old Portland Road	S $1^{\text {st }}$ Street	$54{ }^{\text {th }}$ Street	Both	Bike Lane	25	1	> 7	Yes	No	1
	S $4^{\text {th }}$ Street	$58{ }^{\text {th }}$ Street	West	Mixed Traffic	30	1	N/A	No	No	3
	$54{ }^{\text {th }}$ Street	$58{ }^{\text {th }}$ Street	East	Mixed Traffic	30	1	N/A	No	No	3
	$588^{\text {th }}$ Street	S 12 ${ }^{\text {th }}$ Street	West	Mixed Traffic	30	1	N/A	No	No	3
	$588^{\text {th }}$ Street	S 12 ${ }^{\text {th }}$ Street	East	Mixed Traffic	30	1	N/A	No	No	3
	S $12{ }^{\text {th }}$ Street	Plymouth Street	West	Mixed Traffic	30	1	N/A	No	No	3
	S 12 ${ }^{\text {th }}$ Street	Plymouth Street	East	Mixed Traffic	30	1	N/A	No	No	3
	Plymouth Street	S 15 ${ }^{\text {th }}$ Street	West	Mixed Traffic	30	1	N/A	No	No	3
	Plymouth Street	S 15 ${ }^{\text {th }}$ Street	East	Mixed Traffic	30	1	N/A	No	No	3
	S 15 ${ }^{\text {th }}$ Street	S 18 ${ }^{\text {th }}$ Street/ Kaster Road	Both	Mixed Traffic	30	1	N/A	No	No	3
	S 18 ${ }^{\text {th }}$ Street/ Kaster Road	Storage Pal Driveway	Both	Bike Lane	40	1	5.5-7	No	No	4
	Storage Pal Driveway	Port Avenue	West	Bike Lane	40	1	5.5-7	No	No	4
	Storage Pal Driveway	Port Avenue	East	Bike Lane	40	1	5.5-7	No	No	4
	Port Avenue	Gable Road	Both	Bike Lane	40	1	5.5-7	No	No	4
	Gable Road	Columbia Drainage Driveway	Both	Mixed Traffic	45	1	N/A	No	No	4
	Columbia Drainage Driveway	Millard Road	Both	Mixed Traffic	45	1	N/A	No	No	4
Gable Road	McNulty Way	US 30	Both	Bike Lane	40	1	5.5-7	No	No	4
	Eastern Walmart Driveway	McNulty Way	Both	Bike Lane	40	1	> 7	No	No	3
	Old Portland Road	Eastern Walmart Driveway	Both	Bike Lane	40	1	5.5-7	No	No	4
Millard Road	Old Portland Road	McNulty Way	Both	Mixed Traffic	30	1	N/A	No	No	3
	McNulty Way	US 30	Both	Mixed Traffic	25	1	N/A	No	No	2
Collector										

Plymouth Street	Old Portland Road	S 6 ${ }^{\text {th }}$ Street	Both	Mixed Traffic	25	1	N/A	No	No	2
McNulty Way	Millard Road	Residential Driveway	Both	Mixed Traffic	25	1	N/A	No	No	2
	Residential Driveway	PNWR Rail Crossing	Both	Bike Lane	25	1	< 5.5	No	No	2
	PNWR Rail Crossing	Joint Maintenance Facility Driveway	West	Bike Lane	25	1	< 5.5	No	No	2
	PNWR Rail Crossing	Joint Maintenance Facility Driveway	East	Bike Lane	25	1	< 5.5	No	No	2
	Joint Maintenance Facility Driveway	Industrial Way	West	Bike Lane	25	1	< 5.5	No	No	2
	Joint Maintenance Facility Driveway	Industrial Way	East	Mixed Traffic	25	1	N/A	No	No	2
	Industrial Way	Gable Road	Both	Mixed Traffic	25	1	N/A	No	No	2

Shaded cells denote roadway segments that do not satisfy the LTS 2 target.

EXISTING GAPS AND DEFICIENCIES

Streets with no bike lanes or intermittent bike lanes result in bicyclists sharing the travel lane with motor vehicles or using the shoulder if available. In many cases, this is not a desirable option for bicyclists due to narrow lane widths or uneven pavement conditions. Ideally, adequate bicycle facilities should be provided to allow for safe travel between neighborhoods and essential destinations. The City TSP identifies bicycle infrastructure goals and bicycle facility needs.

The following provides a summary of the existing gaps deficiencies in the bicycle facilities within the study area. These gaps and deficiencies were updated based on input from the project team, the advisory committee, and the public throughout the planning process:

- There are several study roadways that currently do not provide on-street bike lanes. These roadways include:
- Old Portland Road from S $4^{\text {th }}$ Street to $\mathrm{S} 18^{\text {th }}$ Street/S Kaster Road
- Old Portland Road from Gable Road to Millard Road
- Millard Road from Old Portland Road to US 30
- Plymouth Street from Old Portland Road to its terminus
- McNulty Way from Millard Road to 600 feet north of Millard Road
- McNulty Way from the Joint Maintenance Facility driveway to Gable Road
- There are several study roadways whose bike lanes are too narrow or adjacent speeds are too high to achieve a BLTS 2 rating. These streets include:
- US 30 from Gable Road to Millard Road
- Old Portland Road from S $18^{\text {th }}$ Street/S Kaster Road to Gable Road
- Gable Road from Old Portland Road to US 30
- There are several study area roadways with mixed traffic where posted speed limits are too high and/or removal of the centerline would improve BLTS. These roadways include:
- Old Portland Road from S $4^{\text {th }}$ Street to $\mathrm{S} 18^{\text {th }}$ Street/S Kaster Road
- Old Portland Road from Gable Road to Millard Road
- Millard Road from Old Portland Road to McNulty Way

TRANSIT FACILITIES

Columbia County Rider (CCR) provides transit service within the study area. Route 3, the South County Flex, operates Monday through Friday from 7:30 AM to 5:50 PM on 90-minute headways. Route 3 connects St. Helens to Scappoose with several stops along Old Portland Road and Gable Road in the study area. Several other CCR routes operate along US 30, stopping at the Columbia County Rider Transit Center toward the north side of St. Helens.

Columbia County also offers a flex route that operates on a fixed schedule and stops at certain designated locations on each trip, but is also allowed to make a limited number of deviations off-route each trip to pick up and drop off passengers at other locations. CCR Flex-Route service operates between St. Helens and Scappoose in an effort to reduce the number of dial-a-ride trips between the two cities. The route operates with 90 -minute headways and connects with CCR's Fixed Routes to Portland, Washington County, and Tri-Met connections.

Columbia County also offers dial-a-ride service for seniors, individuals with disabilities, and citizens that require Dial-A-Ride for life needs. Dial-A-Ride is available in the study area Monday through Friday from 7:30 AM to 7:00 PM. CCR does not provide service on weekends and federal holidays.

TRAFFIC SAFETY SUMMARY

Five years of historical crash data for study intersections and study roadways was obtained from ODOT and reviewed to identify potential existing safety issues. Figure 7 shows the mapped crash data for the City of St. Helens, including locations of injuries and fatalities for the five-year period. As Millard Road is outside city limits, Millard Road crashes were not mapped.

INTERSECTION CRASH HISTORY

Historical crash data for the study intersections was reviewed to identify potential safety issues that could be addressed as part of the Riverfront Connector Plan. Crash data for the study intersections was obtained from ODOT for the five-year period from January 1, 2011 through December 31, 2015 and is summarized in Table 7. As shown, no fatalities were reported at the study intersections over the fiveyear period. Appendix " E " contains the historical traffic safety data provided by ODOT.

Table 7: Intersection Crash History (January 1, 2011 through December 31, 2015)

Intersection	Crash Type						Crash Severity		
	Rear- End	Turning	Angle	Ped	Fixed Object	Other	Property Damage Only	Injury	Fatal
S $1^{\text {st }}$ Street/ St. Helens Street	-	2	2^{1}	-	-	-	1	3	-
S $8^{\text {th }}$ Street/ Old Portland Road	-	-	-	-	-	-	-	-	-
S 12 ${ }^{\text {th }}$ Street/ Old Portland Road	-	-	-	-	1	-	1	-	-
Plymouth Street/ Old Portland Road	-	1	-	-	-	-	-	1	-
S 15 ${ }^{\text {th }}$ Street/ Old Portland Road	1	-	-	-	-	-	1	-	-
S 18 ${ }^{\text {th }}$ Street/ Old Portland Road	8	1	1	1	2	-	5	8	-
Port Avenue/ Old Portland Road	2	-	-	-	2	-	2	2	-
Railroad Avenue/ Old Portland Road	-	-	-	-	-	-	-	-	-
Gable Road/ Old Portland Road	-	-	-	-	-	-	-	-	-
Gable Road/ McNulty Way	-	-	-	-	-	-	-	-	-
Gable Road/ US 30	10	9	3	1	-	-	9	14	-
Millard Road/ Old Portland Road	-	1^{1}	-	-	-	-	-	1	-
Millard Road/ McNulty Way	-	-	-	-	-	-	-	-	-
Millard Road/ US 30	2	4	2	-	-	-	5	3	-

[^0]

Reported Crash Locations, 2011-2015

Data Provided by ODOT
January 1, 2011 through December 31, 2015

KITTELSON

\& ASSOCIATES

Figure
7

Critical crash rates were calculated for each of the study intersections following the analysis methodology presented in ODOT's SPR 667 Assessment of Statewide Intersection Safety Performance (Reference 6). SPR 667 provides average crash rates at a variety of intersection configurations in Oregon based on number of approaches and traffic control types. The average crash rates represent the approximate number of crashes that are "expected" at a study intersection. Additionally, this average crash rate was used to calculate the critical crash rate for each study intersection, based on the Highway Safety Manual methodology (Reference 7). The critical crash rate is calculated for each intersection based on the average crash rate for each facility and serves as a threshold for further analysis.

Table 8 summarizes the critical crash rate for each intersection and compares those values to the observed crash rate. SPR 667 also provides $90^{\text {th }}$ percentile crash rates based on number of approaches and traffic control types. For the signalized intersections whose critical crash rates could not be calculated, the observed crash rate was compared to the $90^{\text {th }}$ percentile crash rate. Per ODOT, if the observed crash rate at the study location exceeds the critical rate, it is a possible indication that the location is exceeding average crash rates.

Table 8: Intersection Crash Rate Assessment

Location	Total Crashes	90 ${ }^{\text {th }}$ Percentile Crash Rate	Critical Crash Rate	Observed Crash Rate at Intersection	Observed Crash Rate > Critical Crash Rate?
S 1 ${ }^{\text {st }}$ Street/ St. Helens Street	4	-	0.48	0.63	Yes
S 8 ${ }^{\text {th }}$ Street/ Old Portland Road	0	-	0.29	0.00	No
S 12 ${ }^{\text {th }}$ Street/ Old Portland Road	1	-	0.25	0.09	No
Plymouth Street/ Old Portland Road	1	-	0.38	0.08	No
S 15 ${ }^{\text {th }}$ Street/ Old Portland Road	1	-	0.37	0.08	No
S 18 ${ }^{\text {th }}$ Street/ Old Portland Road	13	0.86	-	0.73	No
Port Avenue/ Old Portland Road	4	-	0.20	0.23	Yes
Railroad Avenue/ Old Portland Road	0	-	0.33	0.00	No
Gable Road/ Old Portland Road	0	-	0.20	0.00	No
Gable Road/ McNulty Way	0	-	0.21	0.00	No
Gable Road/ US 30	23	0.86	-	0.40	No
Millard Road/ Old Portland Road	1	-	0.26	0.02	No
Millard Road/ McNulty Way	0	-	0.79	0.00	No
Millard Road/ US 30	8	-	1.27	0.49	Yes

As shown in Table 8, the $S 1^{\text {st }}$ Street/St. Helens Street, Port Avenue/Old Portland Road, and Millard Road/US 30 intersections exceed the critical crash rate.

At S $1^{\text {st }}$ Street/St. Helens Street, two of the four reported crashes involved turning maneuvers while the other two involved angle collisions. Four crashes were reported at Port Avenue/Old Portland Road, with two involving turning movements and two involving a collision with a fixed-object. No measures were identified to reduce the potential for these types of crashes at these locations based on review of the crash data alone.

Approximately 75% of crashes reported at Millard Road/US 30 involved angle or turning crashes. Signalization of the Millard Road/US 30 intersection is identified in the St. Helens TSP and would provide protected movements for vehicles approaching US 30 from Millard Road.

SEGMENT CRASH HISTORY

Historical crash data along study roadway segments was reviewed in an effort to identify potential existing roadway safety issues. Crash data for the study roadway segments was obtained from ODOT for the five-year period from January 1, 2011 through December 31, 2015. Table 9 identifies the reported crashes along each of the segments during this five-year period.

Table 9: Segment Crash History (January 1, 2011 through December 31, 2015)

	Crash Type						Crash Severity		
Segment	RearEnd	Turning	Angle	Ped	Fixed Object	Other	Property Damage Only	Injury	Fatal
Gable Road - US 30 to Old Portland Road	1	6	2	-	-	-	6	3	-
Old Portland Road Millard Road to S 1st Street	5	4	3	1	17	5	20	14	1
Plymouth Street Old Portland Road to Roadway terminus	-	-	-	-	1	-	1	-	-
McNulty Way Millard Road to Gable Road	-	-	-	-	-	-	-	-	-
Millard Road - McNulty Way to Old Portland Road	-	-	1	-	3	2	5	1	-

As shown in Table 9, one fatality was reported on the study roadways. The fatality reportedly occurred midblock on Old Portland Road, approximately 1,300 feet south of its intersection with Gable Road. The crash report indicates the fatal crash involved a head-on collision attributed to a driver under the influence speeding and losing control of the vehicle.

Segment crash rates were calculated using the methodology provided in ODOT's Analysis Procedures Manual. Crash rates were compared to statewide average crash rates for similar facilities based on urban area context and functional classification using ODOT's 2015 Table II: Five-Year Comparison of State Highway Crash Rates (Reference 8). Table 10 summarizes the average crash rate for each segment and compares those values to the observed crash rate.

Table 10: Segment Crash Rate Assessment

Location	Total Crashes	Segment Length (miles)	AADT	Average Crash Rate	Observed Crash Rate at Segment	Observed Crash Rate > Critical Crash Rate?
Gable Road - US 30 to Old Portland Road	9	0.57	11,290	2.82	0.77	No
Old Portland Road - Millard Road to S 1st Street	35	2.76	9,690	2.82	0.72	No
Plymouth Street - Old Portland Road to Roadway terminus	1	0.57	900	1.91	1.07	No
McNulty Way - Millard Road to Gable Road	0	0.78	1,160	1.91	0	No
Millard Road - McNulty Way to Old Portland Road	6	0.38	650	2.82	13.35	Yes

AADT=Average Annual Daily Traffic
As shown in Table 10, the Millard Road segment exceeds the statewide average crash rate. Half of the reported segment crashes involved fixed-object crashes, 33% involved head-on collisions, and 17% were angle crashes. Most reported crashes involved property damage only.

SAFETY PRIORITY INDEX SYSTEM

The ODOT 2016 Safety Priority Index System (SPIS) list identifies existing hazardous intersections for potential safety improvements. No study intersections are listed in the top ten percent of ODOT's SPIS ranking program.

NEXT STEPS

The information presented in this document was used to assist in the identification of near-term transportation improvement needs as well as for comparison to future conditions.

REFERENCES

1. City of St. Helens. City of St. Helens Transportation System Plan. 2011.
2. Oregon Department of Transportation. Oregon Highway Plan. 1999.
3. Transportation Research Board. 2000 Highway Capacity Manual. 2000.
4. Oregon Department of Transportation. Analysis Procedures Manual. December 2017 update.
5. Oregon Department of Transportation. Highway Design Manual. 2012.
6. Oregon Department of Transportation Research Section. SPR 667 Assessment of Statewide Intersection Safety Performance. June 2011.
7. American Association of State Highway and Transportation Officials. Highway Safety Manual. 2010.
8. Oregon Department of Transportation. Table II: Five-Year Comparison of State Highway Crash Rates. 2015.

Appendix A LOS Criteria Definitions

DESCRIPTION OF LEVEL-OF-SERVICE

Level of service (LOS) is a concept developed to quantify the degree of comfort (including such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles) afforded to drivers as they travel through an intersection or roadway segment. Six grades are used to denote the various level of service from " A " to " F ". 1

Signalized Intersections

The six level-of-service grades are described qualitatively for signalized intersections in Table A1. Additionally, Table A2 identifies the relationship between level of service and average control delay per vehicle. Control delay is defined to include initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Using this definition, Level of Service " D " is generally considered to represent the minimum acceptable design standard.

Table A1: Level-of-Service Definitions (Signalized Intersections)

Level of Service	Average Delay per Vehicle
A	Very low average control delay, less than 10 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
B	Average control delay is greater than 10 seconds per vehicle and less than or equal to 20 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for a level of service A, causing higher levels of average delay.
C	Average control delay is greater than 20 seconds per vehicle and less than or equal to 35 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
D	Average control delay is greater than 35 seconds per vehicle and less than or equal to 55 seconds per vehicle. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle length, or high volume/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Average control delay is greater than 55 seconds per vehicle and less than or equal to 80 seconds per vehicle. This is usually considered to be the limit of acceptable delay. These high delay values generally (but not always) indicate poor progression, long cycle lengths, and high volume/capacity ratios. Individual cycle failures are frequent occurrences.
F	Average control delay is in excess of 80 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation. It may also occur at high volume/capacity ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such high delay values.

1 Most of the material in this appendix is adapted from the Transportation Research Board, Highway Capacity Manual, (2000).
Table A2: Level-of-Service Criteria for Signalized Intersections

Level of Service	Average Control Delay per Vehicle (Seconds)
A	<10.0
B	>10 and ≤ 20
C	>20 and ≤ 35
D	>35 and ≤ 55
E	>55 and ≤ 80
F	>80

Unsignalized Intersections

Unsignalized intersections include two-way stop-controlled (TWSC) and all-way stop-controlled (AWSC) intersections. The 2000 Highway Capacity Manual (HCM) provides models for estimating control delay at both TWSC and AWSC intersections. A qualitative description of the various service levels associated with an unsignalized intersection is presented in Table A3. A quantitative definition of level of service for unsignalized intersections is presented in Table A4. Using this definition, Level of Service " E " is generally considered to represent the minimum acceptable design standard.

Table A3: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	Average Delay per Vehicle to Minor Street
A	- Nearly all drivers find freedom of operation. - Very seldom is there more than one vehicle in queue.
B	- Some drivers begin to consider the delay an inconvenience. - Occasionally there is more than one vehicle in queue.
C	- Many times there is more than one vehicle in queue. - Most drivers feel restricted, but not objectionably so.
D	- Often there is more than one vehicle in queue. - Drivers feel quite restricted.
E	- Represents a condition in which the demand is near or equal to the probable maximum number of vehicles that can be accommodated by the movement. - There is almost always more than one vehicle in queue. - Drivers find the delays approaching intolerable levels.
F	- Forced flow. - Represents an intersection failure condition that is caused by geometric and/or operational constraints external to the intersection.

Table A4: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	Average Control Delay per Vehicle (Seconds)
A	<10.0
B	>10.0 and ≤ 15.0
C	>15.0 and ≤ 25.0
D	>25.0 and ≤ 35.0
E	>35.0 and ≤ 50.0
F	>50.0

It should be noted that the level-of-service criteria for unsignalized intersections are somewhat different than the criteria used for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from different kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized intersection. Additionally, there are a number of driver behavior considerations that combine to make delays at signalized intersections less galling than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, while drivers on the minor street approaches to TWSC intersections must remain attentive to the task of identifying
acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized intersections than signalized intersections. For these reasons, it is considered that the control delay threshold for any given level of service is less for an unsignalized intersection than for a signalized intersection. While overall intersection level of service is calculated for AWSC intersections, level of service is only calculated for the minor approaches and the major street left turn movements at TWSC intersections. No delay is assumed to the major street through movements. For TWSC intersections, the overall intersection level of service remains undefined: level of service is only calculated for each minor street lane.

In the performance evaluation of TWSC intersections, it is important to consider other measures of effectiveness (MOEs) in addition to delay, such as v / c ratios for individual movements, average queue lengths, and 95th-percentile queue lengths. By focusing on a single MOE for the worst movement only, such as delay for the minor-street left turn, users may make inappropriate traffic control decisions. The potential for making such inappropriate decisions is likely to be particularly pronounced when the HCM level-of-service thresholds are adopted as legal standards, as is the case in many public agencies.

Appendix B Traffic Counts

LOCATION: US 30 -- Millard Rd CITY/STATE: Saint Helens, OR																	$\begin{aligned} & 145 \\ & \text { May } \end{aligned}$	$\begin{aligned} & 501 \\ & 32017 \\ & \hline \end{aligned}$
$\begin{gathered} \hline \text { 5-Min Count } \\ \text { Period } \\ \text { Beginning At } \\ \hline \end{gathered}$	US 30(Northbound)				US 30(Southbound)				Millard Rd(Eastbound)				Millard Rd (Westbound) Left Thru Right				Total	Hourly Totals
8:15 AM	6	161	3	0	5	210	14	0	1	0	11	0	0	0	4		415	
8:30 AM	15	156	9	0	2	203	6	0	2	0	16	0	0	0	2		411	
8:45 AM	10	104	5	0	3	220	12	0	2	1	8	0	3	0	4		372	1637
9:00 AM	9	116	3	0	4	175	7	0	0	1	20	0	0	2	1		338	1536
9:15 AM	2	129	4	0	1	161	4	0	2	0	12	0	0	1	4		320	1441
9:30 AM	6	101	3	0	3	197	8	0	3	1	8	0	2	0	2		334	1364
9:45 AM	12	129	3	0	4	180	13	0	1	0	13	0	2	3	2		362	1354
10:00 AM	6	135	2	0	0	162	8	0	5	0	16	0	1	0	2		337	1353
10:15 AM	4	126	1	0	1	166	7	0	5	1	14	0	2	0	10		337	1370
10:30 AM	2	145	2	0	1	176	10	0	6	1	10	0	1	0	2		356	1392
10:45 AM	5	143	2	0	3	167	9	0	3	2	7	0	2	0	5		348	1378
11:00 AM	6	147	2	0	3	188	15	0	1	0	15	0	3	0	4		384	1425
11:15 AM	11	161	1	0	4	169	13	0	4	0	12	0	2	2	5		384	1472
11:30 AM	4	137	5	0	5	140	10	0	3	1	6	0	1	0	2		314	1430
11:45 AM	4	173	4	0	8	181	6	0	3	0	5	0	1	0	4		389	1471
12:00 PM	3	172	2	0	6	203	8	0	4	0	12	0	2	3	8		423	1510
12:15 PM	15	182	4	0	5	179	13	0	1	0	9	0	2	0	3		413	1539
12:30 PM	12	164	2	0	2	181	20	0	7	0	10	0	0	0	2		400	1625
12:45 PM	11	146	1	0	5	188	12	0	4	0	13	0	1	0	2		383	1619
1:00 PM	16	176	3	0	3	175	10	0	8	0	11	0	1	0	3		406	1602
1:15 PM	12	169	6	0	8	159	15	0	2	0	7	0	0	1	7		386	1575
1:30 PM	11	151	4	0	7	180	13	0	4	0	11	0	4	0	6		391	1566
1:45 PM	11	185	2	0	3	168	14	0	3	0	13	0	0	0	4		403	1586
2:00 PM	15	190	6	0	2	175	12	0	9	1	6	0	3	0	4		423	1603
Peak 15-Min Flowrates	Northbound				Southbound				Eastbound				Westbound				Total	
	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	J		
All Vehicles	136	1432	16	0	16	832	44	0	0	0	32	0	4	4	12		2528	
Heavy Trucks	24	304	8		8	180	4		0	0	4		0	4	4		540	
Pedestrians Bicycles Railroad Stopped Buses	0	0	0		0	0	0		0	0	0		0	0	0		0	
Comments:																		

LOCATION: McNulty Way -- Gable Rd CITY/STATE: Saint Helens, OR															QC	$\begin{aligned} & 1456 \\ & \text { May } \\ & \hline \end{aligned}$	$\begin{aligned} & 304 \\ & 32017 \\ & \hline \end{aligned}$
				16 75			eak-H Peak 15		$\begin{aligned} & : 45 \mathrm{~F} \\ & 4: 50 \end{aligned}$	$\begin{aligned} & \text { M -- } 5 \\ & \hline \text { M -- } 5 \end{aligned}$ y ORTA ECTIO	45 PM :05 P oun ON D SERVI 7 sTop						
$\begin{gathered} \hline \text { 5-Min Count } \\ \text { Period } \\ \text { Beginning At } \\ \hline \hline \end{gathered}$	McNulty Way (Northbound)				McNulty Way (Southbound)				Gable Rd(Eastbound)				Gable Rd(Westbound)			Total	Hourly Totals
	8	0	2	0	0	0	0	0	0	49	9	0	5	52	0	125	
8:30 AM	15	0	6	0	0	0	0	0	0	45	25	0		60	0	153	
8:45 AM	10	0	5	0	0	0	0	0	0	42	4	0	5	63	0	129	572
9:00 AM	3	0	4	0	0	0	0	0	0	49	5	0	11	57	0	129	536
9:15 AM	7	0	2	0	0	0	0	0	0	39	9	0	4	47	0	108	519
9:30 AM	8	0	4	0	0	0	0	0	0	47	10	0	4	63	0	136	502
9:45 AM	14	0	9	0	0	0	0	0	0	40	12	0	6	70	0	151	524
10:00 AM	12	0	8	0	0	0	0	0	0	50	11	0	1	55	0	137	532
10:15 AM	7	0	9	0	0	0	0	0	0	36	8	0	3	72	0	135	559
10:30 AM	8	0	6	0	0	0	0	0	0	70	11	0	11	57	0	163	586
10:45 AM	8	0	9	0	0	0	0	0	0	37	8	0		61	0	129	564
11:00 AM	27	0	7	0	0	0	0	0	0	62	16	0	7	80	0	199	626
11:15 AM	7	0	2	0	0	0	0	0	0	52	12	0	6	65	0	144	635
11:30 AM	12	0	4	0	0	0	0	0	0	68	4	0	9	74	0	171	643
11:45 AM	21	0	18	0	0	0	0	0	0	64	11	0	4	92	0	210	724
12:00 PM	17	0	9	0	0	0	0	0	0	59	13	0	5	94	0	197	722
12:15 PM	14	0	9	0	0	0	0	0	0	68	15	0	5	79	0	190	768
12:30 PM	8	0	3	0	0	0	0	0	0	81	15	0	7	95	0	209	806
12:45 PM	7	0	8	0	0	0	0	0	0	78	16	0	6	72	0	187	783
1:00 PM	10	0	8	0	0	0	0	0	0	60	11	0	11	98	0	198	784
1:15 PM	9	0	5	0	0	0	0	0	0	65	10	0	6	74	0	169	763
1:30 PM	11	0	4	0	0	0	0	0	0	64	8	0	5	85	0	177	731
1:45 PM	10	0	6	0	0	0	0	0	0	64	12	0	5	81	0	178	722
2:00 PM	Northbound				Southbound				Eastbound				Westbound				717
Peak 15-Min Flowrates					Total												
	Left	Thru	Right	U		Left	Thru	Right	U	Left	Thru	Right					\cup
All Vehicles	100	0	44	0	0	0	0	0	0	356	16	0	8	552	0		
Heavy Trucks	28	0	4		0	0	0		0	92	4		4	116	0		
Pedestrians Bicycles Railroad Stopped Buses	0	0 0	0		0	0	0		0	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	0		0	0	0		
Comments:																	

LOCATION: Old Portland Rd -- Gable Rd CITY/STATE: Saint Helens, OR																$\begin{aligned} & 145 \\ & \text { May } \\ & \hline \end{aligned}$	$\begin{aligned} & 505 \\ & 32017 \\ & \hline \end{aligned}$
$\begin{gathered} \hline \text { 5-Min Count } \\ \text { Period } \\ \text { Beginning At } \\ \hline \end{gathered}$	Old Portland Rd (Northbound)				Old Portland Rd(Southbound)				Gable Rd(Eastbound)				Gable Rd(Westbound)			Total	Hourly Totals
8:15 AM	2	0	27	0	0	0	0	0	0	42	5	0	6	49	0	131	
8:30 AM	8	0	31	0	0	0	0	0	0	43	0	0	8	51	0	141	
8:45 AM	5	0	27	0	0	0	0	0	0	41	3	0	20	56	0	152	618
9:00 AM	1	0	13	0	0	0	0	0	0	39	5	0	14	61	0	133	557
9:15 AM	6	0	16	0	0	0	0	0	0	34	6	0	13	42	0	117	543
9:30 AM	5	0	15	0	0	0	0	0	0	39	6	0	10	56	0	131	533
9:45 AM	10	0	14	0	0	0	0	0	0	43	5	0	17	59	0	148	529
10:00 AM	7	0	19	0	0	0	0	0	0	46	5	0	10	42	0	129	525
10:15 AM	5	0	20	0	0	0	0	0	0	38	6	0	10	65	0	144	552
10:30 AM	4	0	18	0	0	0	0	0	0	62	6	0	14	55	0	159	580
10:45 AM	3	0	11	0	0	0	0	0	0	37	3	0	13	58	0	125	557
11:00 AM	7	0	17	0	0	0	0	0	0	57	7	0	12	74	0	174	602
11:15 AM	6	0	19	0	0	0	0	0	0	44	9	0	13	58	0	149	607
11:30 AM	5	0	31	0	0	0	0	0	0	59	5	0	17	71	0	188	636
11:45 AM	7	0	25	0	0	0	0	0	0	72	7	0	18	81	0	210	721
12:00 PM	6	0	25	0	0	0	0	0	0	52	8	0	24	81	0	196	743
12:15 PM	6	0	29	0	0	0	0	0	0	66	5	0	11	74	0	191	785
12:30 PM	6	0	21	0	0	0	0	0	0	61	11	0	15	89	0	203	800
12:45 PM	4	0	25	0	0	0	0	0	0	71	10	0	16	68	0	194	784
1:00 PM	8	0	20	0	0	0	0	0	0	57	4	0	12	85	0	186	774
1:15 PM	6	0	35	0	0	0	0	0	0	57	9	0	17	68	0	192	775
1:30 PM	11	0	19	0	0	0	0	0	0	60	4	0	13	74	0	181	753
1:45 PM	11	0	27	0	0	0	0	0	0	63	3	0	16	70	0	190	749
2:00 PM	4	0	23	0	0	0	0	0	0	80	1	0	10	76	0	194	757
Peak 15-Min	Northbound				Southbound				Eastbound				Westbound				Total
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right		
All Vehicles	20	0	256	0	0	0	0	0	0	368	20	0	60	500	0		
Heavy Trucks	8	0	88		0	0	0		0	92	8		8	104	0		
Pedestrians Bicycles Railroad Stopped Buses	0	20 0	0		0	0	0		0	0	0		0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0		
Comments:																	

LOCATION: Old Portland Rd -- S 18th St/Kaster Rd CITY/STATE: Saint Helens, OR													QC JOB \#: 14560508 DATE: Thu, May 182017				
							eak-H ak 15	our:	$\begin{aligned} & 45 \\ & 1: 50 \end{aligned}$	$\begin{aligned} & \text { M -- } 5 ; \\ & \text { כM -- } 5 \end{aligned}$	45 PM :05 P oun ON DA SERVI				$\begin{gathered} 16.1 \\ \hline 10.0 \\ \hline \end{gathered}$	50.0 50.0 50.0 0 0	
5-Min Count Period Beginning At	Old Portland Rd(Northbound) (Northbound)				Old Portland Rd (Southbound)				$\underset{\text { (Eastbound) }}{\mathrm{S} \text { 18th St/Kaster Rd }}$				S 18th St/Kaster Rd(Westbound)			Total	Hourly Totals
8:15 AM	8	41	3	0	0	45	1	0	1	0	7	0	1	0	0	107	
8:30 AM	8	50	2	0	0	50	0	0	2	2	6	0	1	1	0	122	
8:45 AM	8	46	4	0	0	66	3	0	1	0	8	0	2	0	1	139	536
9:00 AM	6	28	2	0	2	61	1	0	1	1	10	0	2	1	0	115	483
9:15 AM	10	25	3	0	0	40	1	0	3	0	10	0	2	0	1	95	471
9:30 AM	7	32	5	0	0	51	0	0	0	1	10	0	1	1	1	109	458
9:45 AM	9	39	1	0	0	52	2	0	3	1	11	0	5	1	0	124	443
10:00 AM	11	43	1	0	0	35	1	0	3	1	7	0	,	0	1	107	435
10:15 AM	7	34	4	0	0	47	2	0	1	2	21	0	1	0	0	119	459
10:30 AM	15	38	4	0	0	46	3	0	4	0	12	0	1	0	0	123	473
10:45 AM	11	32	2	0	1	41	4	0	1	0	13	0	5	0	0	110	459
11:00 AM	14	46	2	0	0	63	4	0	5	0	20	0	2	1	2	159	511
11:15 AM	4	48	7	0	0	49	6	0	1	0	14	0	3	0	0	132	524
11:30 AM	7	56	3	0	0	56	9	0	0	1	16	0	3	0	,	152	553
11:45 AM	17	60	2	0	1	59	1	0	2	0	31	0	3	1	2	179	622
12:00 PM	19	47	4	0	2	56	1	0	2	1	15	0	8	1	2	158	621
12:15 PM	14	57	3	0	0	62	2	0	2	1	14	0	4	0	0	159	648
12:30 PM	16	56	7	0	2	58	2	0	5	0	14	0	3	,	0	164	660
12:45 PM	15	67	2	0	0	57	5	0	1	2	14	0	5	1	1	170	651
1:00 PM	7	52	2	0	1	67	2	0	4	2	19	0	3	0	0	159	652
1:15 PM	19	48	1	0	0	57	3	0	4	0	21	0	5	0	0	158	651
1:30 PM	13	59	4	0	0	63	4	0	1	0	16	0	1	0	0	161	648
1:45 PM	18	61	0	0	0	55	1	0	3	1	17	0	3	1	0	160	638
2:00 PM	25	75	2	0	0	54	4	0	1	2	16	0	0	0	0	179	658
Peak 15-Min	Northbound				Southbound				Eastbound				Westbound				
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	Total	
All Vehicles	64	524	36	0	0	360	32	0	12	24	72	0	16	16	4		
Heavy Trucks	16	108	24		0	56	0		0	12	4		4	8	4		
Pedestrians Bicycles Railroad Stopped Buses	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0		0	0	0		0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0		0	4 0	0		
Comments:																	

Appendix C Existing Traffic Conditions

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{4}$			¢			\dagger			\dagger	
Traffic Volume (veh/h)	6	5	0	21	5	19	1	134	14	2	237	9
Future Volume (Veh/h)	6	5	0	21	5	19	1	134	14	2	237	9
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Hourly flow rate (vph)	7	6	0	25	6	23	1	161	17	2	286	11

Pedestrians

Lane Width (ft)
Walking Speed (t/s)

Percent Blockage

Right turn flare (veh)	None None	
Median type		
Median storage veh)		

Upstream signal (ft)
pX, platoon unblocked

vC, conflicting volume	493	476	292	470	472	170	297	178
VC1, stage 1 conf vol								
vC2, stage 2 conf vol		493	476	292	470	472	170	297
vCu, unblocked vol	7.1	6.5	6.2	7.2	6.7	6.4	5.1	4.1
tC, single (s)	3.5	4.0	3.3	3.6	4.2	3.4	3.1	2.2
tC, 2 stage (s)	99	99	100	95	99	97	100	100
tF (s)	471	490	752	485	463	839	864	1410

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	13	54	179	299		
Volume Left	7	25	1	2		
Volume Right	0	23	17	11		
cSH	479	588	864	1410		
Volume to Capacity	0.03	0.09	0.00	0.00		
Queue Length 95th (ft)	2	8	0	0		
Control Delay (s)	12.7	11.7	0.1	0.1		
Lane LOS	B	B	A	A		
Approach Delay (s)	12.7	11.7	0.1	0.1		
Approach LOS	B	B			A	

	\rightarrow	\checkmark	\leftarrow	\uparrow	\downarrow
Lane Group	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	58	4	4	259	343
v/c Ratio	0.21	0.03	0.02	0.29	0.37
Control Delay	10.1	18.2	15.2	6.5	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	10.1	18.2	15.2	6.5	7.1
Queue Length 50th (ft)	2	1	1	34	48
Queue Length 95th (ft)	27	7	7	66	89
Internal Link Dist (ft)	578		583	1147	882
Turn Bay Length (ft)					
Base Capacity (vph)	273	147	266	886	930
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.21	0.03	0.02	0.29	0.37

Intersection Summary

c Critical Lane Group

	$\stackrel{ }{ }$	\rightarrow	\checkmark	\longleftarrow	4	\dagger	p		\downarrow	\checkmark
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	141	194	188	228	57	573	112	148	1060	234
v/c Ratio	0.76	0.79	0.74	0.44	0.07	0.35	0.17	0.17	0.61	0.34
Control Delay	73.6	64.2	67.0	40.7	14.5	24.3	5.8	14.5	26.4	11.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	73.6	64.2	67.0	40.7	14.5	24.3	5.8	14.5	26.4	11.4
Queue Length 50th (ft)	106	133	141	139	18	147	0	51	310	41
Queue Length 95th (ft)	171	201	213	200	48	247	42	109	490	127
Internal Link Dist (tt)		1174		1250		3769			940	
Turn Bay Length (ft)	135		175		135		450	125		140
Base Capacity (vph)	247	370	328	760	964	1650	649	871	1731	683
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.52	0.57	0.30	0.06	0.35	0.17	0.17	0.61	0.34

Intersection Summary

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	$\stackrel{ }{ }$		\%	F		\%	$\uparrow \uparrow$	7	\%	¢ \uparrow	F
Traffic Volume (vph)	131	126	55	175	119	93	53	533	104	138	986	218
Future Volume (vph)	131	126	55	175	119	93	53	533	104	138	986	218
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	1.00	1.00	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.95		1.00	0.93		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1319	1406		1833	2997		1655	3596	1282	1493	3426	1219
Flt Permitted	0.95	1.00		0.95	1.00		0.18	1.00	1.00	0.34	1.00	1.00
Satd. Flow (perm)	1319	1406		1833	2997		1655	3596	1282	1493	3426	1219
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	141	135	59	188	128	100	57	573	112	148	1060	234
RTOR Reduction (vph)	0	15	0	0	26	0	0	0	61	0	0	68
Lane Group Flow (vph)	141	179	0	188	202		57	573	51	148	1060	166
Confl. Peds. (\#/hr)	3		10	10		3						
Heavy Vehicles (\%)	26\%	18\%	18\%	19\%	19\%	19\%	19\%	25\%	16\%	19\%	27\%	22\%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4		3	8		5	2		1	,	
Permitted Phases							2		2	6		6
Actuated Green, G (s)	16.9	19.9		16.6	19.6		60.8	55.0	55.0	70.0	59.7	59.7
Effective Green, g (s)	16.9	19.9		16.6	19.6		60.8	55.0	55.0	70.0	59.7	59.7
Actuated g/C Ratio	0.14	0.17		0.14	0.16		0.51	0.46	0.46	0.58	0.50	0.50
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.3	4.1	4.1	2.3	4.1	4.1
Lane Grp Cap (vph)	185	233		253	489		838	1648	587	870	1704	606
v/s Ratio Prot	c0.11	c0.13		0.10	0.07		0.00	0.16		c0.01	c0.31	
v/s Ratio Perm							0.03		0.04	0.08		0.14
v/c Ratio	0.76	0.77		0.74	0.41		0.07	0.35	0.09	0.17	0.62	0.27
Uniform Delay, d1	49.6	47.8		49.7	45.0		16.5	20.9	18.3	12.3	21.9	17.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	15.8	13.2		10.3	0.3		0.0	0.6	0.3	0.1	1.7	1.1
Delay (s)	65.4	61.1		60.0	45.4		16.5	21.5	18.6	12.4	23.7	18.6
Level of Service	E	E		E	D		B	C	B	B	C	B
Approach Delay (s)		62.9			52.0			20.7			21.7	
Approach LOS		E			D			C			C	

Intersection Summary			
HCM 2000 Control Delay	30.4	HCM 2000 Level of Service	C
HCM 2000 Volume to Capacity ratio	0.65		18.0
Actuated Cycle Length (s)	120.0	Sum of lost time (s)	D
Intersection Capacity Utilization	74.7%	ICU Level of Service	
Analysis Period (min)	15		

C Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	7	\%	$\uparrow \uparrow$	7	7	$\uparrow \uparrow$	7
Traffic Volume (veh/h)	8	3	93	5	1	12	23	678	21	15	1291	25
Future Volume (Veh/h)	8	3	93	5	1	12	23	678	21	15	1291	25
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	9	3	101	5	1	13	25	737	23	16	1403	27
Pedestrians		1										
Lane Width (ft)		12.0										
Walking Speed (t / s)		3.5										

Percent Blockage 0

Right turn flare (veh)	10	5		None
Median type		None		

Upstream signal (ft)
pX, platoon unblocked

VC, conflicting volume	1855	2246	702	1572	2223	368	1404	760
VC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1855	2246	702	1572	2223	368	1404	760
tC, single (s)	8.5	7.8	7.3	9.0	6.5	7.9	4.6	4.6
tC, 2 stage (s)	4.0	4.7	3.5	4.2	4.0	3.8	2.5	2.5
tF (s)	62	82	70	76	97	97	93	98
p0 queue free \%	24	16	337	21	40	509	375	702

Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	NB 4	SB 1	SB 2	SB 3	SB 4
Volume Total	113	19	25	368	368	23	16	702	702	27
Volume Left	9	5	25	0	0	0	16	0	0	0
Volume Right	101	13	0	0	0	23	0	0	0	27
cSH	206	75	375	1700	1700	1700	702	1700	1700	1700
Volume to Capacity	0.55	0.25	0.07	0.22	0.22	0.01	0.02	0.41	0.41	0.02
Queue Length 95th (ft)	73	22	5	0	0	0	2	0	0	0
Control Delay (s)	49.3	72.0	15.3	0.0	0.0	0.0	10.2	0.0	0.0	0.0
Lane LOS	E	F	C				B			
Approach Delay (s)	49.3	72.0	0.5				0.1			
Approach LOS	E	F								
Intersection Summary										
Average Delay			3.2							
Intersection Capacity Utilization			58.3\%	ICU Level of Service					B	
Analysis Period (min)			15							

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{\text {¢ }}$			\dagger			¢			\dagger	
Traffic Volume (veh/h)	6	29	34	3	45	32	41	59	6	27	58	8
Future Volume (Veh/h)	6	29	34	3	45	32	41	59	6	27	58	8
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Hourly flow rate (vph)	8	39	45	4	60	43	55	79	8	36	77	11
Pedestrians		2			9			8				
Lane Width (ft)		12.0			12.0			12.0				
Walking Speed (fts)		3.5			3.5			3.5				
Percent Blockage		0			1			1				
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												

Upstream signal (ft)
pX, platoon unblocked

vC, conflicting volume	422	362	92	429	364	92	90	96
$\mathrm{VC1}$, stage 1 conf vol								
$\mathrm{VC2}$, stage 2 conf vol								
vCu, unblocked vol	422	362	92	429	364	92	90	4.3
tC, single (s)	7.3	6.9	6.4	8.1	6.7	6.4	4.3	2.4
tC, 2 stage (s)	3.7	4.4	3.4	4.4	4.2	3.5	2.4	97
tF (s)	98	92	95	99	88	95	96	1369

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	92	107	142	124		
Volume Left	8	4	55	36		
Volume Right	45	43	8	11		
cSH	610	589	1413	1369		
Volume to Capacity	0.15	0.18	0.04	0.03		
Queue Length 95th (t)	13	16	3	2		
Control Delay (s)	11.9	12.5	3.2	2.4		
Lane LOS	B	B	A	A		
Approach Delay (s)	11.9	12.5	3.2	2.4		
Approach LOS	B	B			A	
Intersection Summary						

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			${ }_{4}$			${ }^{4}$			${ }_{4}$	
Traffic Volume (veh/h)	9	8	0	11	2	17	0	314	48	4	232	23
Future Volume (Veh/h)	9	8	0	11	2	17	0	314	48	4	232	23
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Hourly flow rate (vph)	11	10	0	14	2	21	0	388	59	5	286	28

Pedestrians
Lane Width (ft)
Walking Speed (t/s)

Percent Blockage
Right turn flare (veh)

Median type	None	None
Median storage veh)		

Upstream signal (ft)
pX, platoon unblocked

vC, conflicting volume	750	757	300	732	742	418	314	447
VC1, stage 1 conf vol								447
VC2, stage 2 conf vol	750	757	300	732	742	418	314	4.3
VCu, unblocked vol	7.2	6.8	6.2	7.2	6.5	6.4	4.1	2.4
tC, single (s)	3.6	4.2	3.3	3.6	4.0	3.5	2.2	100
tC, 2 stage (s)	96	97	100	96	99	97	100	1002

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1	
Volume Total	21	37	447	319	
Volume Left	11	14	0	5	
Volume Right	0	21	59	28	
cSH	306	437	1258	1002	
Volume to Capacity	0.07	0.08	0.00	0.00	
Queue Length 95th (ft)	5	7	0	0	
Control Delay (s)	17.6	14.0	0.0	0.2	
Lane LOS	C	B		A	
Approach Delay (s)	17.6	14.0	0.0	0.2	
Approach LOS	C	B			
Intersection Summary					
Average Delay			1.1		
Intersection Capacity Utilization			29.4\%	ICU Level of Service	A
Analysis Period (min)			15		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			¢	
Traffic Volume (veh/h)	1	1	24	1	0	0	30	394	1	0	247	2
Future Volume (Veh/h)	1	1	24	1	0	0	30	394	1	0	247	2
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79
Hourly flow rate (vph)	1	1	30	1	0	0	38	499	1	0	313	3
Pedestrians					3							
Lane Width (ft)					12.0							
Walking Speed (ft/s)					3.5							
Percent Blockage					0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								962				
pX, platoon unblocked	0.88	0.88		0.88	0.88	0.88				0.88		
vC , conflicting volume	890	894	314	924	894	502	316			503		
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	809	813	314	847	814	370	316			371		
tC, single (s)	8.1	6.5	6.3	7.1	6.5	6.2	4.4			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	4.4	4.0	3.4	3.5	4.0	3.3	2.4			2.2		
p0 queue free \%	99	100	96	100	100	100	97			100		
cM capacity (veh/h)	179	268	703	232	267	599	1116			1055		

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1		
Volume Total	32	1	538	316		
Volume Left	1	1	38	0		
Volume Right	30	0	1	3		
CSH	616	232	1116	1055		
Volume to Capacity	0.05	0.00	0.03	0.00		
Queue Length 95th (ft)	4	0	3	0		
Control Delay (s)	11.2	20.6	1.0	0.0		
Lane LOS	B	C	A			
Approach Delay (s)	11.2	20.6	1.0	0.0		
Approach LOS	B	C			A	

	\rightarrow	\dagger	\leftarrow	\uparrow	\downarrow
Lane Group	EBT	WBL	WBT	NBT	SBT
Lane Group Flow (vph)	111	24	19	655	355
v/c Ratio	0.36	0.15	0.08	0.82	0.38
Control Delay	11.5	20.6	16.6	20.3	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.5	20.6	16.6	20.3	7.1
Queue Length 50th (ft)	7	6	4	139	49
Queue Length 95th (ft)	37	21	17	\#302	81
Internal Link Dist (ft)	578		441	1146	882
Turn Bay Length (tt)					
Base Capacity (vph)	309	163	233	799	946
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.36	0.15	0.08	0.82	0.38

Intersection Summary

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

c Critical Lane Group

	4	\rightarrow	\geqslant	7	\longleftarrow	4	4	4	1	,	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$		\%	f			\uparrow			*	
Traffic Volume (veh/h)	0	539	21	5	382	0	27	0	14	0	0	0
Future Volume (Veh/h)	0	539	21	5	382	0	27	0	14	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Hourly flow rate (vph)	0	665	26	6	472	0	33	0	17	0	0	0
Pedestrians								8			3	
								12.0			12.0	
Walking Speed (ft/s)								3.5			3.5	
Percent Blockage 0												
Right turn flare (veh)												
Median type		None		None								
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC , conflicting volume	475			699			1170	1173	686	1182	1186	475
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	475			699			1170	1173	686	1182	1186	475
tC , single (s)	4.1			4.1			7.5	6.5	6.8	7.1	6.5	6.2
tC, 2 stage (s)												
$t F(\mathrm{~s})$	2.2			2.2			3.8	4.0	3.8	3.5	4.0	3.3
p0 queue free \%	100			99			77	100	95	100	100	100
cM capacity (veh/h)	1094			900			142	190	363	158	187	592
Direction, Lane \#	EB 1	WB 1	WB 2	NB 1	SB 1							
Volume Total	691	6	472	50	0							
Volume Left	0	6	0	33	0							
Volume Right	26	0	0	17	0							
	1094	900	1700	179	1700							
CSH	0.00	0.01	0.28	0.28	0.00							
Volume to Capacity	0	1	0	27	0							
Control Delay (s)	0.0	9.0	0.0	32.7	0.0							
Lane LOS		A		D	A							
Approach Delay (s) 0.0		0.1		32.7	0.0							
Approach LOS				D	A							
Intersection Summary												
Average Delay			1.4									
			39.7\%		CU Level	Service			A			
Intersection Capacity Utilization Analysis Period (min)			15									

	\prime	\rightarrow	\square	\leftarrow	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	141	218	233	416	132	1215	200	185	799	147
v / c Ratio	0.75	0.81	0.83	0.65	0.16	0.81	0.31	0.23	0.54	0.24
Control Delay	72.6	64.7	73.2	42.7	16.1	38.5	5.5	17.0	29.5	6.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	72.6	64.7	73.2	42.7	16.1	38.5	5.5	17.0	29.5	6.9
Queue Length 50th (ft)	106	152	174	257	50	448	0	73	243	5
Queue Length 95th (ft)	171	224	\#286	347	99	\#690	54	138	371	55
Internal Link Dist (ft)		1174		1250		3769			940	
Turn Bay Length (ft)	135		175		135		450	125		140
Base Capacity (vph)	250	369	313	775	908	1495	637	807	1479	617
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.56	0.59	0.74	0.54	0.15	0.81	0.31	0.23	0.54	0.24

Intersection Summary

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	F		\%	\dagger		\%	¢ \uparrow	7	*	$\uparrow \uparrow$	F
Traffic Volume (vph)	134	147	60	221	172	223	125	1154	190	176	759	140
Future Volume (vph)	134	147	60	221	172	223	125	1154	190	176	759	140
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	1.00	0.97	1.00	1.00	1.00
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.96		1.00	0.92		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1397	1406		1833	2997		1655	3596	1252	1493	3426	1250
Flt Permitted	0.95	1.00		0.95	1.00		0.25	1.00	1.00	0.08	1.00	1.00
Satd. Flow (perm)	1397	1406		1833	2997		1655	3596	1252	1493	3426	1250
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	141	155	63	233	181	235	132	1215	200	185	799	147
RTOR Reduction (vph)	0	13	0	0	42	0	0	0	117	0	0	77
Lane Group Flow (vph)	141	205	0	233	374	0	132	1215	83	185	799	70
Confl. Peds. (\#/hr)	3		17	17		3			4	4		
Heavy Vehicles (\%)	19\%	18\%	18\%	23\%	23\%	23\%	12\%	23\%	15\%	26\%	26\%	19\%
Turn Type	Prot	NA		Prot	NA		pm+pt	NA	Perm	pm+pt	NA	Perm
Protected Phases	7	4		,	8		5	2		1	6	
Permitted Phases							2		2	-		6
Actuated Green, G (s)	16.2	22.0		18.4	24.2		59.6	49.8	49.8	63.6	51.8	51.8
Effective Green, g (s)	16.2	22.0		18.4	24.2		59.6	49.8	49.8	63.6	51.8	51.8
Actuated g/C Ratio	0.13	0.18		0.15	0.20		0.50	0.41	0.41	0.53	0.43	0.43
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	2.3	2.3		2.3	2.3		2.3	4.1	4.1	2.3	4.1	4.1
Lane Grp Cap (vph)	188	257		281	604		821	1492	519	791	1478	539
v/s Ratio Prot	0.10	c0.15		c0.13	0.12		0.01	c0.34		c0.02	0.23	
v/s Ratio Perm							0.07		0.07	0.10		0.06
v / C Ratio	0.75	0.80		0.83	0.62		0.16	0.81	0.16	0.23	0.54	0.13
Uniform Delay, d1	50.0	46.9		49.3	43.7		17.4	31.0	22.0	20.8	25.3	20.5
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	14.4	15.0		17.4	1.6		0.1	5.0	0.7	0.1	1.4	0.5
Delay (s)	64.3	61.9		66.7	45.3		17.5	36.0	22.7	20.9	26.7	21.0
Level of Service	E	E		E	D		B	D	C	C	C	C
Approach Delay (s)		62.8			53.0			32.7			25.0	
Approach LOS		E			D			C			C	

Intersection Summary			
HCM 2000 Control Delay	36.8	HCM 2000 Level of Service	D
HCM 2000 Volume to Capacity ratio	0.74	Sum of lost time (s)	18.0
Actuated Cycle Length (s)	120.0	F	
Intersection Capacity Utilization	93.4%	ICU Level of Service	F
Analysis Period (min)	15		

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }^{*}$	「		\uparrow	F＇	\％	$\uparrow \uparrow$	「	\％	$\uparrow \uparrow$	「
Traffic Volume（veh／h）	5	1	41	7	3	18	112	1552	13	23	1014	51
Future Volume（Veh／h）	5	1	41	7	3	18	112	1552	13	23	1014	51
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			0\％	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	5	1	44	7	3	19	119	1651	14	24	1079	54

Pedestrians
Lane Width（ ft ）
Walking Speed（t／s）

Percent Blockage

Right turn flare（veh）	10	5		None
Median type		None		
Median storage veh）				

Upstream signal（ft）
pX，platoon unblocked

VC，conflicting volume	2192	3030	540	2499	3016	826	1079	1665
VC1，stage 1 conf vol								
vC2，stage 2 conf vol								
vCu，unblocked vol	2192	3030	540	2499	3016	826	1079	5.0
tC，single（s）	7.5	6.5	7.5	8.0	7.5	7.6	4.6	2.6
tC，2 stage（s）	3.5	4.0	3.6	3.8	4.5	3.6	2.5	90
tF（s）	32	89	90	0	25	93	77	239

Direction，Lane \＃	EB 1	WB 1	NB 1	NB 2	NB 3	NB 4	SB 1	SB 2	SB 3	SB 4
Volume Total	50	29	119	826	826	14	24	540	540	54
Volume Left	5	7	119	0	0	0	24	0	0	0
Volume Right	44	19	0	0	0	14	0	0	0	54
cSH	64	17	523	1700	1700	1700	239	1700	1700	1700
Volume to Capacity	0.78	1.72	0.23	0.49	0.49	0.01	0.10	0.32	0.32	0.03
Queue Length 95th（ft）	88	104	22	0	0	0	8	0	0	0
Control Delay（s）	112.6	529.5	13.9	0.0	0.0	0.0	21.8	0.0	0.0	0.0
Lane LOS	F	F	B				C			
Approach Delay（s）	112.6	529.5	0.9				0.5			
Approach LOS	F	F								
Intersection Summary										
Average Delay			7.7	ICU Level of Service						
Intersection Capacity Utilization			66．8\％	ICU Level of Service						
Analysis Period（min）			15						C	

Kittelson \＆Associates，Inc．

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	17			\uparrow	\uparrow	$\mathbf{7}$
Traffic Volume (veh/h)	17	20	19	7	6	9
Future Volume (Veh/h)	17	20	19	7	6	9
Sign Control	Yield			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.62	0.62	0.62	0.62	0.62	0.62
Hourly flow rate (vph)	27	32	31	11	10	15

Pedestrians

Lane Width (ft)
Walking Speed (t/s)

Percent Blockage
Right turn flare (veh)

Median type	None \quad None
Median storage veh)	

Upstream signal (ft)
pX, platoon unblocked
vC , conflicting volume
$83 \quad 10 \quad 25$
$\mathrm{vC1}$, stage 1 conf vol

vCu, unblocked vol	83	10	25
tC , single (s)	6.8	6.7	4.5

tC, 2 stage (s)

$\mathrm{tF}(\mathrm{s})$	3.8	3.7	2.5
pO queue free \%	97	97	98
cM capacity (veh/h)	819	959	1390

Direction, Lane \#	EB 1	NB 1	SB 1	SB 2		
Volume Total	59	42	10	15		
Volume Left	27	31	0	0		
Volume Right	32	0	0	15		
cSH	889	1390	1700	1700		
Volume to Capacity	0.07	0.02	0.01	0.01		
Queue Length 95th (ft)	5	2	0	0		
Control Delay (s)	9.3	5.7	0.0	0.0		
Lane LOS	A	A				
Approach Delay (s)	9.3	5.7	0.0		A	
Approach LOS	A					

	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Movement		Φ			Φ			Φ			\ddagger	
Lane Configurations	0	0	22	1	2	0	18	241	2	0	58	1
Traffic Volume (veh/h)	0	0	22	1	2	0	18	241	2	0	58	1
Future Volume (Veh/h)		Stop			Stop			Free			Free	
Sign Control	0%			0%			0%			0%		
Grade		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor	0	0	24	1	2	0	20	262	2	0	63	1

Pedestrians

Lane Width (ft)
Walking Speed (ft/s)

Percent Blockage

Right turn flare (veh)	
Median type	None
Median storage veh)	

Upstream signal (ft)

pX, platoon unblocked vC, conflicting volume	368	368	64	390	367	263	64	264
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								264
vCu, unblocked vol	368	368	64	390	367	263	64	4.1
tC, single (s)	7.1	6.5	6.6	7.1	7.0	6.2	4.4	2.2
tC, 2 stage (s)								100
tF (s)	3.5	4.0	3.7	3.5	4.5	3.3	2.5	1312

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1	
Volume Total	24	3	284	64	
Volume Left	0	1	20	0	
Volume Right	24	0	2	1	
cSH	902	506	1362	1312	
Volume to Capacity	0.03	0.01	0.01	0.00	
Queue Length 95th (ft)	2	0	1	0	
Control Delay (s)	9.1	12.2	0.7	0.0	
Lane LOS	A	B	A		
Approach Delay (s)	9.1	12.2	0.7	0.0	
Approach LOS	A	B			
Intersection Summary					
Average Delay			1.2		
Intersection Capacity Utilization			30.5\%	ICU Level of Service	A
Analysis Period (min)			15		

Appendix D PLTS Results

Table D-1: Detailed PLTS Analysis Results

Street	From	To	Side	Pedestrian LTS Criteria									
				Speed (MPH)	Total Number of Lanes	Bike Lane Width (feet)	Parking	Sidewalk Condition	Sidewalk Width (feet) ${ }^{1}$	Buffer	Illumination	Land Use	PLTS
Major Arterial													
US 30	Millard Road	Gable Road	West	45	5	6	No	Fair	8	Solid Surface (6 feet)	No	Autooriented commercial	3
	Millard Road	Gable Road	East	45	5	6	No	None	N/A	Solid Surface (6 feet)	No	Autooriented commercial	4
Minor Arterial													
Old Portland Road	S $1^{\text {st }}$ Street	S $4{ }^{\text {th }}$ Street	Both	25	2	8	```Yes (14 feet)```	Poor	6	Solid Surface (22 feet)	No	Residential	3
	S $4^{\text {th }}$ Street	S $8^{\text {th }}$ Street	West	30	2	N/A	No	None	N/A	N/A	No	Residential	4
	S 4 ${ }^{\text {th }}$ Street	S 8 ${ }^{\text {th }}$ Street	East	30	2	N/A	No	Poor	4	Landscape (3 feet)	No	Residential	4
	S $8^{\text {th }}$ Street	S 12 ${ }^{\text {th }}$ Street	West	30	2	N/A	No	None	N/A	N/A	No	Residential	4
	S $8^{\text {th }}$ Street	S $12{ }^{\text {th }}$ Street	East	30	2	N/A	No	Poor	4	Landscape (3 feet)	No	Residential	4
	S 12 ${ }^{\text {th }}$ Street	Plymouth Street	West	30	2	N/A	No	None	N/A	N/A	No	Residential	4
	S $12{ }^{\text {th }}$ Street	Plymouth Street	East	30	2	N/A	No	Poor	4	Landscape (3 feet)	No	Residential	4
	Plymouth Street	S 15 ${ }^{\text {th }}$ Street	West	30	2	N/A	No	None	N/A	N/A	No	Residential	4
	Plymouth Street	S 15 ${ }^{\text {th }}$ Street	East	30	2	N/A	No	Poor	4	Landscape (3 feet)	No	Residential	4
	S 15 ${ }^{\text {th }}$ Street	S $18^{\text {th }}$ Street/ Kaster Road	Both	30	2	N/A	No	None	N/A	N/A	No	Residential	4
	S 18 ${ }^{\text {th }}$ Street/ Kaster Road	Storage Pal Driveway	Both	40	2	6	No	None	N/A	Solid Surface (6 feet)	No	Park/Public Facility	4
	Storage Pal Driveway	Port Avenue	West	40	2	6	No	Fair	7	Solid Surface (6 feet)	No	Low Density Development	2
	Storage Pal Driveway	Port Avenue	East	40	2	6	No	None	N/A	Solid Surface (6 feet)	No	Low Density Development	4

	Port Avenue	Gable Road	Both	40	3	6	No	None	N/A	Solid Surface (6 feet)	No	Light Industrial	4
	Gable Road	Columbia Drainage Driveway	Both	45	2	N/A	No	None	N/A	N/A	No	Light Industrial	4
	Columbia Drainage Driveway	Millard Road	Both	45	2	N/A	No	None	N/A	N/A	No	Low Density Development	4
Gable Road	McNulty Way	US 30	Both	40	3	6	No	Fair	6	Solid Surface (6 feet)	Yes	Autooriented commercial	4
	Eastern Walmart Driveway	McNulty Way	Both	40	2	9	No	None	N/A	Solid Surface (9 feet)	Yes	Autooriented commercial	4
	Old Portland Road	Eastern Walmart Driveway	Both	40	2	7	No	None	N/A	Solid Surface (7 feet)	Yes	Autooriented commercial	4
Millard Road	Old Portland Road	McNulty Way	Both	30	2	N/A	No	None	N/A	N/A	No	Light Industrial	4
	McNulty Way	US 30	Both	25	3	N/A	No	None	N/A	N/A	No	Light Industrial	4
Collector													
Plymouth Street	Old Portland Road	S $6{ }^{\text {th }}$ Street	Both	25	2	N/A	No	None	N/A	N/A	No	Residential	4
McNulty Way	Millard Road	Residential Driveway	Both	25	2	N/A	No	None	N/A	N/A	No	Low Density Development	4
	Residential Driveway	PNWR Rail Crossing	Both	25	2	5	No	None	N/A	Solid Surface (5 feet)	No	Low Density Development	4
	PNWR Rail Crossing	Joint Maintenance Facility Driveway	West	25	2	5	No	None	N/A	Solid Surface (5 feet)	No	Light Industrial	4
	PNWR Rail Crossing	Joint Maintenance Facility Driveway	East	25	2	5	No	Good	7	Solid Surface (5 feet)	No	Light Industrial	3
	Joint Maintenance Facility Driveway	Industrial Way	West	25	2	5	No	Good	7	Solid Surface (5 feet)	No	Light Industrial	3
	Joint Maintenance Facility Driveway	Industrial Way	East	25	2	N/A	No	None	N/A	N/A	No	Light Industrial	4
	Industrial Way	Gable Road	Both	25	2	N/A	No	None	N/A	N/A	No	Light Industrial	4

${ }^{1}$ Sidewalk refers to sidewalks, shared-use paths, and pedestrian paths.

Appendix E ODOT Crash Data

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
1st St \& St Helens St
January 1, 2011 through December 31, 2015

COLLISION TYPE	$\begin{array}{r} \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \\ \hline \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2015														
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
2015 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR: 2013														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2013 TOTAL	0	2	0	2	0	2	0	2	0	2	0	2	0	0
YEAR: 2011														
ANGLE	0	1	0	1	0	2	0	0	1	0	1	1	0	0
2011 TOTAL	0	1	0	1	0	2	0	0	1	0	1	1	0	0
FINAL TOTAL	0	3	1	4	0	4	0	2	2	2	2	4	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result
from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	OFF- ROAD

YEAR:

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Old Portland Rd \& 12th St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2015														
SIDESWIPE - MEETING	0	0	1	1	0	0	0	0	1	0	1	1	0	1
2015 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	1
FINAL TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	1

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result
from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Old Portland Rd \& 15th St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \\ & \hline \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2011														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2011 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
FINAL TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result
from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.

January 1, 2011 through December 31, 2015

	TRLR QTY	MOVE				A	S		
	OWNER	FROM		PRTC	INJ	G	E	LICNS	PED
v\#	VEH TYPE	T0	P\#	TYPE	SVRTY	E	x	RES	LOC

01 DRVR NONE 00 M OR-Y 026 OR<25
\square
000
01109

00

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Old Portland Rd \& 18th St / Kaster Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	$\begin{array}{r} \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTER- SECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2015														
REAR-END	0	1	0	1	0	1	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2015 TOTAL	0	1	1	2	0	1	0	2	0	2	0	2	0	0
YEAR: 2014														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
REAR-END	0	1	1	2	0	1	0	2	0	2	0	2	0	0
2014 TOTAL	0	1	2	3	0	1	0	3	0	3	0	3	0	0
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2013 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2012														
FIXED / OTHER OBJECT	0	1	0	1	0	1	0	0	1	0	1	1	0	1
REAR-END	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2012 TOTAL	0	2	0	2	0	2	0	1	1	1	1	2	0	1
YEAR: 2011														
FIXED / OTHER OBJECT	0	1	0	1	0	1	0	1	0	0	1	1	0	1
PEDESTRIAN	0	1	0	1	0	1	0	0	1	1	0	1	0	0
REAR-END	0	2	1	3	0	2	0	3	0	3	0	3	0	0
2011 TOTAL	0	4	1	5	0	4	0	4	1	4	1	5	0	1
FINAL TOTAL	0	8	5	13	0	8	0	11	2	11	2	13	0	2

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

	$\begin{aligned} & \mathrm{S} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{R} \end{aligned}$	S w	DATE				City street	INT-TYP	INT-REL	OFF-RD		WTHR	CRASH TYP	SPCL USE		MOVE	PRTC		TNJ	A		LICNS	PED	ERROR	ACTN	EvENT	CAUSE	
SER\#		A u	c 0				FIRST STREET	RD CHAR	(MEDIAN)						TRLR QTY	S													
INVEST	E	L G	H R	DAY/T		FC	SECOND STREET	DIRECT	Legs	TRAF-	RNDBT			SURE	COLL typ		OWNER			FROM	G	E							
UNLOC?	D	C S	L K	LAT/L		DISTNC	INTERSECTION SEQ \#	LOCTN	(\#LANES)	CONTL	DRVWY		LIGHT	SVRTY	v\#	VEH TYPE	т	P\#	TYPE		SVRTY	E	x	RES					LOC
00115	N	N N		03/31	2014	16	OLD Portiand RD	Inter	cross	N		${ }^{\text {N }}$	CLR	S-1STOP	01	none 0	Strght										006,092	27	
none				$\begin{array}{llll}-122 & 48 & 45.82\end{array}$			18 TH ST	CN		tre SIGNA		${ }^{\text {N }}$	DRY	REAR		PRVTE	SW NE									000	006	00	
No	45	51	6.99				1	04	0			${ }^{\text {N }}$	DAY	PDO		PSNGR CAR		01	DRVR	none	32	F	$\begin{aligned} & \text { OR-Y } \\ & \text { OR<25 } \end{aligned}$		016	038		27	
															02	none 0	Stop												
																prvte	SW NE									011	092	00	
																PSNGR CAR		01	DRVR	NONE	24	F	$\mathrm{OR}-\mathrm{Y}$		000	000		00	

Old Portland Rd \& Gable Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NONFATAL CRASHES	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Old Portland Rd \& Millard Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \\ & \hline \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2014														
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	0	0
2014 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
FINAL TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result
from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Old Portland Rd \& Plymouth St
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{array}{r} \text { DRY } \\ \text { SURF } \\ \hline \end{array}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	OFF- ROAD
YEAR: 2014														
TURNING MOVEMENTS	0	1	0	1	0	1	0	0	1	1	0	1	0	0
2014 TOTAL	0	1	0	1	0	1	0	0	1	1	0	1	0	0
FINAL TOTAL	0	1	0	1	0	1	0	0	1	1	0	1	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result
from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file.
Please be aware of this change when comparing pre-2011 crash statistics.

SPCL USE		
TRLR QTY	MOVE	
ONER	FROM	
\#	VEH TYPE	TO

$01 \begin{array}{lll}\text { NONE } \\ \text { PRVTE }\end{array} 0 \begin{gathered}\text { STRGHT } \\ \text { NE }\end{gathered}$ PRNGR CAR NE SW 000 $\begin{array}{llllll}\text { PSNGR CAR } 01 & \text { DRVR INJC } 21 & \text { F OR-Y } & 000\end{array}$ 02 none 0 Strght

PRVTE E W
PSNGR CAR 01 DRVR NONE 32 F SUSP R<25

028
015

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Old Portland Rd \& Port Ave
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \\ \hline \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \\ & \hline \end{aligned}$
YEAR: 2013														
FIXED / OTHER OBJECT	0	0	1	1	0	0	0	1	0	1	0	1	0	1
REAR-END	0	2	0	2	0	2	0	2	0	2	0	2	0	0
2013 TOTAL	0	2	1	3	0	2	0	3	0	3	0	3	0	1
YEAR: 2012														
FIXED / OTHER OBJECT	0	0	1	1	0	0	0	0	1	1	0	1	0	1
2012 TOTAL	0	0	1	1	0	0	0	0	1	1	0	1	0	1
FINAL TOTAL	0	2	2	4	0	2	0	3	1	4	0	4	0	2

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

January 1, 2011 through December 31, 2015

Railroad Ave \& Old Portland Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	NONFATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	OFF- ROAD

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
US 30 Lower Columbia River Hwy \& Gable Rd
January 1, 2011 through December 31, 2015

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \mathrm{NON}- \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2015														
ANGLE	0	1	0	1	0	2	1	1	0	1	0	1	0	0
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	4	4	0	0	0	4	0	2	2	4	0	0
2015 TOTAL	0	1	5	6	0	2	1	6	0	4	2	6	0	0
YEAR: 2013														
REAR-END	0	3	1	4	0	5	0	3	1	3	1	4	0	0
TURNING MOVEMENTS	0	1	0	1	0	1	0	0	1	1	0	1	0	0
2013 TOTAL	0	4	1	5	0	6	0	3	2	4	1	5	0	0
YEAR: 2012														
ANGLE	0	1	0	1	0	1	0	1	0	0	1	1	0	0
PEDESTRIAN	0	1	0	1	0	1	0	0	1	1	0	1	0	0
REAR-END	0	2	1	3	0	2	0	1	2	1	2	3	0	0
TURNING MOVEMENTS	0	1	1	2	0	1	2	2	0	2	0	2	0	0
2012 TOTAL	0	5	2	7	0	5	2	4	3	4	3	7	0	0
YEAR: 2011														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
REAR-END	0	1	1	2	0	1	0	1	1	2	0	2	0	0
TURNING MOVEMENTS	0	2	0	2	0	3	0	1	1	2	0	2	0	0
2011 TOTAL	0	4	1	5	0	5	0	3	2	5	0	5	0	0
FINAL TOTAL	0	14	9	23	0	18	3	16	7	17	6	23	0	0

[^1]
\[

$$
\begin{aligned}
& \text { US } 30 \text { Lower Columbia River Hwy \& Gable Rd } \\
& \text { January 1, } 2011 \text { through December 31, } 2015
\end{aligned}
$$
\]

| 00022 | N N N | $01 / 16 / 2013$ | | COLUMBIA |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NONE | | | WP | ST. HELENS |
| NO | | ST HELEN UA | | |

$\begin{array}{lclllllll}1 & 14 & & & \text { INTER } & \text { CROSS } & \text { N } & \text { N CLR } & \text { S-1STOP } \\ \text { MN } & 0 & \text { LOWER COL RIVER HY } & \text { SW } & & & \text { TRF SIGNAL } & \text { N } & \text { DRY } \\ \text { REAR }\end{array}$ 27.69 GABLE RD 06 N DAY INJ 009200100s00 1

pSNGR CAR

$$
01 \text { DRVR INJC } 56 \text { F } \begin{aligned}
& \text { OR-Y } \\
& \\
& \text { OR<25 }
\end{aligned}
$$

$\begin{array}{lll}01 & \begin{array}{l}\text { NONE } \\ \text { PRVTE }\end{array} & 0 \\ \text { STRGHT } \\ \text { SW NE }\end{array}$
SW NE
01 DRVR NONE 36 F OR-Y OR<25

PRVIE SW NE

01 DRVR INJC 47 F OR-Y
000
011
000

PRVTE
PSNGR CAR
01 DRVR NONE 49 F OR-Y
026
022
013

02 None 0 stop
PRVTE SW NE
PSNGR CAR
01 DRVR INJC 41 M OR-Y

03 none 0 stop
PRVTE SW NE
PSNGR CAR $\quad 01$ DRVR NONE 20 M
$\begin{aligned} & \text { OR-Y } \\ & \text { OR<25 }\end{aligned}$
01 none 0 strght
PRVTE SW NE PSNGR CAR

01 DRVR NONE 32 F OR-Y

PRVTE SW NE
PSNGR CAR 01 DRVR NONE 00 m UNK 000
00
00
 PSNGR CAR

01 DRVR INJC 46 F OR-Y
022

02 none 0 Stop
PRVTE SW NE PSNGR CAR 01 DRVR INJC 43 M OR-Y

$$
\begin{aligned}
& \text { US } 30 \text { Lower Columbia River Hwy \& Gable Rd } \\
& \text { January } 1 \text {, } 2011 \text { through December 31, } 2015
\end{aligned}
$$

$$
\begin{aligned}
& \text { Columbia River Hwy \& Gable Rc } \\
& \text { O11 through December 31, } 2015
\end{aligned}
$$

No $\quad \begin{array}{llllll}45 & 50 & 55.23 & -122 & 49 & 53.69\end{array}$

00064	N N N N N 02/21/2011			CO	OLUMBIA
		Mon	4 P		т. Helens
					T helen UA
No	4550	5.23	-122		53.69

1	14		INTER	
MN	0	LOWER COL RIVER	HY	SW
27.69	GABLE RD		06	
009200100 S00	1			

1	14			INTE
MN	0	LOWER COL RIVER	HY	SW
27.69	GABLE	RD		06
009200100 S00	1			

1	14			INTER
MN	0	LOWER COL	RIVER	HY
27.	SW			
27	GABLE	RD		06
$009200100 S 00$	1			

1	14			INTER
MN	0	LOWER COL RIVER	HY	CN
27.69	GABLE RD		01	
009200100 SAO	1			

```
\(\begin{array}{lllll}\text { CROSS } & \text { N } & \text { N } & \text { CLD } & \text { ANGL-OTH } \\ & \text { TRF } & \text { SIGNAL } & \text { N } & \text { DRY } \\ \text { ANGL }\end{array}\)
\(0 \quad \begin{array}{llll}0 & \text { N DAY } & \text { ANGL } \\ & & \text { INJ }\end{array}\)
``` 009200100 SAB 0
\(\begin{array}{lll}03 \\ \begin{array}{ll}\text { none } \\ \text { PRVTE }\end{array} & 0 & \begin{array}{l}\text { Stop } \\ \text { SW }\end{array} \\ & \text { SWE NE }\end{array}\)
PRVTE
PSNGR CAR
01 DRVR NONE 42 F \begin{tabular}{l}
OR-Y \\
OR<25
\end{tabular}
\(\begin{array}{lll}01 & \text { NONE } & 0 \\ \text { PRVTE } & \text { STRGHT } \\ \text { PSNGR } & \text { SW } & \text { NE }\end{array}\)
01
1 DRVR IN
C 52 F
F OR-Y OR<25
\(\begin{array}{lll}02 & \text { NONE } \\ \text { PRVTE } & 0 & \text { STOP } \\ \text { SW } & \text { SW }\end{array}\)
PSNGR CAR
01 DRVR NONE 45 M OR-Y
000
011
000
\(01 \begin{array}{cc}\text { NoNE } \\ \text { PRVTE }\end{array} 0 \begin{gathered}\text { STRGHT } \\ \text { SW NE }\end{gathered}\)
\(\qquad\) 01 DRVR NONE 56 M OR-Y
026
29
00
PSNGR CAR
02 NONE \(1 \underset{\text { PRVTE }}{\text { Stop }}\)
PSNGR CAR
01 DRVR NONE 63 M OR-Y
000
011
000
01 \begin{tabular}{lll}
NONE \\
PRVTE & 0 & \(\begin{array}{l}\text { TURN-L } \\
\text { SE } \\
\text { SE }\end{array}\) \\
\hline
\end{tabular}
01 DRVR NONE
81 M OR-OR-Y
OR<25
\(02 \begin{array}{lll}\text { NONE } & 0 & \begin{array}{l}\text { STOP } \\ \text { PRVTE }\end{array} \\ & \text { SW } \\ \text { SWE }\end{array}\)
PRNGR CAR
01 DRVR NONE 57 M OR-Y
000
012
000
00
\(01 \begin{array}{ccc}\text { None } \\ \text { PRVTE } \\ \text { PRNGR } & 0 & \begin{array}{c}\text { STRGHT } \\ \text { SW }\end{array} \\ \text { SW }\end{array}\) PSNGR CAR
 \begin{tabular}{ll}
PRVIGR CAR & NW \\
\hline
\end{tabular} 01 DRVR NONE 29 F OR-Y OR<25

020,016
022
038
013
04,27
00
00

03 NONE 0 StOP
PRVTE NE SW
PSNGR CAR
01 DRVR INJC \(25 \mathrm{~F} \begin{gathered}\text { OTh-Y } \\ \text { OR }>25\end{gathered}\)

US 30 Lower Columbia River Hwy \& Gable Rd
January 1, 2011 through December 31, 2015

\[
\begin{aligned}
& \text { US } 30 \text { Lower Columbia River Hwy \& Gable Rd } \\
& \text { January 1, } 2011 \text { through December 31, } 2015
\end{aligned}
\]

SPCL USE
TRLR \(Q T Y\) \(\begin{array}{ll}\text { TRLR QTY } & \text { MOVE } \\ \text { ONER } & \text { FROM } \\ \text { O } & \text { VEH TYPE } \\ \text { TO }\end{array}\) PRTC INJ \({ }_{\mathrm{A}}^{\mathrm{A}}\) S 00401 N N N \(11 / 30 / 201217 \quad\) LOWER COL RIVER HY \(\quad\) INTER \(\quad\) CROSS \(N \quad\) N \(\quad\) N RAIN S-1STOP 01 NONE 0 STRGHT
 PSNGR CAR

01 DRVR NONE 30 F OR-Y R<25

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
US 30 Lower Columbia River Hwy \& Millard Rd
January 1, 2011 through December 31, 2015
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline COLLISION TYPE & FATAL CRASHES & \[
\begin{array}{r}
\text { NON- } \\
\text { FATAL } \\
\text { CRASHES } \\
\hline
\end{array}
\] & PROPERTY DAMAGE ONLY & TOTAL CRASHES & PEOPLE
KILLED & \begin{tabular}{l}
PEOPLE \\
INJURED
\end{tabular} & TRUCKS & \[
\begin{gathered}
\text { DRY } \\
\text { SURF }
\end{gathered}
\] & WET SURF & DAY & DARK & INTERSECTION & INTERSECTION RELATED & \[
\begin{aligned}
& \text { OFF- } \\
& \text { ROAD }
\end{aligned}
\] \\
\hline \multicolumn{15}{|l|}{YEAR: 2015} \\
\hline ANGLE & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline 2015 TOTAL & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\
\hline \multicolumn{15}{|l|}{YEAR: 2013} \\
\hline REAR-END & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline TURNING MOVEMENTS & 0 & 1 & 1 & 2 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 \\
\hline 2013 TOTAL & 0 & 1 & 2 & 3 & 0 & 1 & 0 & 3 & 0 & 3 & 0 & 3 & 0 & 0 \\
\hline \multicolumn{15}{|l|}{YEAR: 2012} \\
\hline TURNING MOVEMENTS & 0 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 1 & 2 & 0 & 2 & 0 & 0 \\
\hline 2012 TOTAL & 0 & 1 & 1 & 2 & 0 & 1 & 0 & 1 & 1 & 2 & 0 & 2 & 0 & 0 \\
\hline \multicolumn{15}{|l|}{YEAR: 2011} \\
\hline ANGLE & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline REAR-END & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 2011 TOTAL & 0 & 1 & 1 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 \\
\hline FINAL TOTAL & 0 & 3 & 5 & 8 & 0 & 4 & 0 & 6 & 2 & 7 & 1 & 8 & 0 & 0 \\
\hline
\end{tabular}

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

\[
\text { January 1, } 2011 \text { through December 31, } 2015
\]

ACTION CODE TRANSLATION LIST

\section*{\begin{tabular}{cl}
ACTION & SHORT \\
CODE & DESCRIPTION \\
\hline
\end{tabular}}
\begin{tabular}{|c|c|c|}
\hline 000 & NONE & NO ACTION OR NON-WARRANTED \\
\hline 001 & SKIDDED & SKIDDED \\
\hline 002 & ON/OFF V & GEtting on or off Stopped or Parked vehicle \\
\hline 003 & LOAD OVR & OVERHANGING LOAD Struck another vehicle, etc. \\
\hline 006 & SLOW DN & SLOWED DOWN \\
\hline 007 & Avoiding & AVOIDING MANEUVER \\
\hline 008 & PAR PARK & PARALLEL PARKING \\
\hline 009 & Ang Park & Angle Parking \\
\hline 010 & Interfere & PASSENGER INTERFERING WIth DRIVER \\
\hline 011 & Stopped & Stopped in traffic not Waiting to make a left turn \\
\hline 012 & STP/L TRN & Stopped because of left turn Signal or waiting, etc. \\
\hline 013 & StP turn & Stopped While executing A turn \\
\hline 014 & EMR V PKD & Emergency vehicle legally parked in the roadway \\
\hline 015 & GO A/Stop & PROCEED AFTER StOpring for a stop Sign/flashing red. \\
\hline 016 & TRN A/RED & TURNED ON RED AFTER STOPPING \\
\hline 017 & LOSTCTRL & LoSt Control of vehicle \\
\hline 018 & EXIT DWY & Entering Street or highway from alley or driveway \\
\hline 019 & Entr dwy & ENTERING ALLEY OR DRIVEWAY FROM Street OR HIGHWAy \\
\hline 020 & StR Entr & BEFORE ENTERING ROADWAY, STRUCK PEDESTRIAN, EtC. On SIDEWALK OR SHOULDER \\
\hline 021 & NO DRVR & CAR RAN AWAY - NO DRIVER \\
\hline 022 & PREV CoL & STRUCK, OR WAS STRUCK BY, Vehicle or pedestrian in prior collision before acc. Stabilized \\
\hline 023 & Stalled & VEHICLE STALLED OR DISABLED \\
\hline 024 & DRVR DEAD & DEAD BY UNASSOCIATED CAUSE \\
\hline 025 & fatigue & FAtIGUED, SLEEPY, ASLEEP \\
\hline 026 & SUN & DRIVER BLINDED BY SUN \\
\hline 027 & HDLGHTS & DRIVER BLINDED BY HEADLIGHTS \\
\hline 028 & ILLNESS & PHYSICALLY ILL \\
\hline 029 & THRU MED & VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER \\
\hline 030 & PURSUIT & PURSUING OR ATTEMPTING TO STOP A VEhicle \\
\hline 031 & PASSING & PASSING SITUATION \\
\hline 032 & PRKOFFRD & Vehicle parked beyond curb or shoulder \\
\hline 033 & CROS MED & VEHICLE CROSSED EARTH OR GRASS MEDIAN \\
\hline 034 & \(\mathrm{X} \mathrm{N} / \mathrm{SGNL}\) & Crossing at intersection - no traffic signal present \\
\hline 035 & x w/ SGNL & Crossing at intersection - traffic signal present \\
\hline 036 & DIAGONAL & CROSSING AT INTERSECTION - DIAGONALLY \\
\hline 037 & BTWn Int & CROSSING BETWEEN INTERSECTIONS \\
\hline 038 & DISTRACT & DRIVER'S Attention distracted \\
\hline 039 & W/TRAF-S & WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC \\
\hline 040 & A/TRAF-S & WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC \\
\hline 041 & W/TRAF-P & WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC \\
\hline 042 & A/TRAF-P & WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC \\
\hline 043 & PLAYINRD & PLAYing in Street or road \\
\hline 044 & PUSH MV & PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER \\
\hline 045 & WORK ON & WORKING IN ROADWAY OR ALONG SHOULDER \\
\hline 046 & W/ TRAFIC & NON-MOTORIST WALKING, RUNNING, RIDING, ETC. WITH TRAFFIC \\
\hline 047 & A/ TRAFIC & NON-MOTORIST WALKING, RUNNING, RIDING, ETC. FACING TRAFFIC \\
\hline 050 & LAY ON RD & Standing or lying in roadway \\
\hline 051 & Ent Offrd & Entering / Starting in traffic lane from off road \\
\hline 052 & MERGING & MERGING \\
\hline 055 & SPRAY & BY WATER SPR \\
\hline
\end{tabular}
action code translation list

\section*{CODE DESCRIPTION LONG DESCRIPTION}

088 OTHER OTHER ACTION
099 UNK UNKNOWN ACTION
\begin{tabular}{|c|c|c|}
\hline 00 & NO CODE & No CAUSE ASSOCIATED AT THIS LEVEL \\
\hline 01 & TOO-FAST & TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED. \\
\hline 02 & NO-YIELD & did not Yield RIght-OF-WAY \\
\hline 03 & PAS-STOP & PASSED STOP SIGN OR RED FLASHER \\
\hline 04 & DIS SIG & DISREGARDED TRAFFIC SIGNAL \\
\hline 05 & LEFT-CTR & DROVE LEFT OF CENTER ON TWO-WAY ROAD; Stradduing \\
\hline 06 & IMP-OVER & IMPROPER OVERTAKING \\
\hline 07 & TOO-CLOS & FOLLOWED TOO CLOSELY \\
\hline 08 & IMP-TURN & MADE IMPROPER TURN \\
\hline 09 & DRINKING & ALCOHOL OR DRUG INVOLVED \\
\hline 10 & OTHR-IMP & OTHER IMPROPER DRIVING \\
\hline 11 & MECH-DEF & MECHANICAL DEFECT \\
\hline 12 & OTHER & OTHER (NOT IMPROPER DRIVING) \\
\hline 13 & IMP LN C & ImPROPER CHANGE OF TRAFFIC LANES \\
\hline 14 & DIS TCD & DISREGARDED OTHER TRAFFIC CONTROL DEVICE \\
\hline 15 & WRNG WAY & WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED RO; \\
\hline 16 & FAtIGUE & DRIVER DROWSY/FATIGUED/SLEEPY \\
\hline 17 & ILLNESS & PHYSICAL ILLNESS \\
\hline 18 & IN RDWY & NON-MOTORIST ILLEGALLY IN ROADWAY \\
\hline 19 & NT VISBL & NON-MOTORIST NOT VISIBLE; NON-REFLECTIVE CLOTHIN \\
\hline 20 & IMP PKNG & VEHICLE IMPROPERLY PARKED \\
\hline 21 & DEF STER & DEFECTIVE STEERING MECHANISM \\
\hline 22 & DEF BRKE & INADEQUATE OR NO BRAKES \\
\hline 24 & LOADSHFT & VEHICLE LOST LOAD OR LOAD Shifted \\
\hline 25 & tirefail & TIRE FAILURE \\
\hline 26 & PHANTOM & PHANTOM / NON-CONTACT VEHICLE \\
\hline 27 & InAttent & inattention \\
\hline 28 & NM INATT & NON-MOTORIST INATTENTION \\
\hline 29 & F AVOID & FAILED TO AVOID Vehicle Ahead \\
\hline 30 & SPEED & DRIVING IN EXCESS OF POSTED SPEED \\
\hline 31 & RACING & SPEED RACING (PER PAR) \\
\hline 32 & CARELESS & CARELESS DRIVING (PER PAR) \\
\hline 33 & RECKLESS & RECKLESS DRIVING (PER PAR) \\
\hline 34 & AGGRESV & AGGRESSIVE DRIVING (PER PAR) \\
\hline 35 & RD RAGE & ROAD RAGE (PER PAR) \\
\hline 40 & VIEW OBS & VIEW OBSCURED \\
\hline 50 & USED MDN & IMPROPER USE OF MEDIAN OR SHOULDER \\
\hline 51 & FAIL LN & FAILED TO MAINTAIN LANE \\
\hline 52 & OFF RD & RAN OFF ROAD \\
\hline
\end{tabular}

\section*{COLL SHORT \\ CODE DESCRIPTION LONG DESCRIPTION}
\begin{tabular}{cll}
\hline\(\&\) & OTH & MISCELLANEOUS \\
- & BACK & BACKING \\
0 & PED & PEDESTRIAN \\
1 & ANGL & ANGLE \\
2 & HEAD & HEAD-ON \\
3 & REAR & REAR-END \\
4 & SS-M & SIDESWIPE - MEETING \\
5 & SS-O & SIDESWIPE - OVERTAKING \\
6 & TURN & TURNING MOVEMENT \\
7 & PARK & PARKING MANEUVER \\
8 & NCOL & NON-COLLISION \\
9 & FIX & FIXED OBJECT OR OTHER OBJECT
\end{tabular}

\section*{CRASH TYPE CODE TRANSLATION LIST}

\section*{CRASH SHORT}
type description Long description
\begin{tabular}{cll}
\hline\(\&\) & OVERTURN & OVERTURNED \\
0 & NON-COLL & OTHER NON-COLLISION \\
1 & OTH RDWY & MOTOR VEHICLE ON OTHER ROADWAY \\
2 & PRKD MV & PARKED MOTOR VEHICLE \\
3 & PED & PEDESTRIAN \\
4 & TRAIN & RAILWAY TRAIN \\
6 & BIKE & PEDALCYCLIST \\
7 & ANIMAL & ANIMAL \\
8 & FIX OBJ & FIXED OBJECT \\
9 & OTH OBJ & OTHER OBJECT \\
A & ANGL-STP & ENTERING AT ANGLE - ONE VEHICLE STOPPED \\
B & ANGL-OTH & ENTERING AT ANGLE - ALL OTHERS \\
C & S-STRGHT & FROM SAME DIRECTION - BOTH GOING STRAIGHT \\
D & S-1TURN & FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT \\
E & S-1STOP & FROM SAME DIRECTION - ONE STOPPED \\
F & S-OTHER & FROM SAME DIRECTION-ALL OTHERS, INCLUDING PARKING \\
G & O-STRGHT & FROM OPPOSITE DIRECTION - BOTH GOING STRAIGHT \\
H & O-1 L-TURN & FROM OPPOSITE DIRECTION-ONE LEFT TURN, ONE STRAIGHT \\
I & O-1STOP & FROM OPPOSITE DIRECTION - ONE STOPPED \\
J & O-OTHER & FROM OPPOSITE DIRECTION-ALL OTHERS INCL. PARKING
\end{tabular}
\begin{tabular}{cll}
LIC & SHORT & \\
CODE & DESC & LONG DESCRIPTION \\
\hline 0 & NONE & NOT LICENSED (HAD NEVER BEEN LICENSED) \\
1 & OR-Y & VALID OREGON LICENSE \\
2 & OTH-Y & VALID LICENSE, OTHER STATE OR COUNTRY \\
3 & SUSP & SUSPENDED/REVOKED
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline RES CODE & SHORT DESC & LONG DESCRIPTION \\
\hline 1 & OR<25 & OREGON RESIDENT WITHIN 25 MILE OF HOME \\
\hline 2 & OR>25 & OREGON RESIDENT 25 OR MORE MILES FROM HOME \\
\hline 3 & OR-? & OREGON RESIDENT - UNKNOWN DISTANCE FROM HOME \\
\hline 4 & N -RES & NON-RESIDENT \\
\hline 9 & UNK & UNKNOWN IF OREGON RESIDENT \\
\hline
\end{tabular}

\section*{ERROR CODE TRANSLATION LIST}
\begin{tabular}{|c|c|c|}
\hline ERROR CODE & \begin{tabular}{l}
SHORT \\
DESCRIPTION
\end{tabular} & FULL DESCRIPTION \\
\hline 000 & NONE & NO ERROR \\
\hline 001 & WIDE TRN & WIDE TURN \\
\hline 002 & CUT CORN & CUT CORNER ON TURN \\
\hline 003 & FAIL TRN & FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS \\
\hline 004 & L IN TRF & LEFT TURN IN FRONT OF ONCOMING TRAFFIC \\
\hline 005 & L PROHIB & LEFT TURN WHERE PROHIBITED \\
\hline 006 & FRM WRNG & TURNED FROM WRONG LANE \\
\hline 007 & TO WRONG & TURNED INTO WRONG LANE \\
\hline 008 & ILLEG U & U-TURNED ILLEGALLY \\
\hline 009 & IMP STOP & IMPROPERLY STOPPED IN TRAFFIC LANE \\
\hline 010 & IMP SIG & IMPROPER SIGNAL OR FAILURE TO SIGNAL \\
\hline 011 & IMP BACK & BACKING IMPROPERLY (NOT PARKING) \\
\hline 012 & IMP PARK & IMPROPERLY PARKED \\
\hline 013 & UNPARK & Improper Start leaving Parked position \\
\hline 014 & IMP STRT & IMPROPER START FROM STOPPED POSITION \\
\hline 015 & IMP LGHT & IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC) \\
\hline 016 & INATTENT & INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97) \\
\hline 017 & UNSF VEH & DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT) \\
\hline 018 & OTH PARK & Entering/Exiting Parked position w/ insufficient clearance; other improper parking maneuver \\
\hline 019 & DIS DRIV & DISREGARDED OTHER DRIVER'S SIGNAL \\
\hline 020 & DIS SGNL & DISREGARDED TRAFFIC SIGNAL \\
\hline 021 & RAN Stop & DISREGARDED STOP SIGN OR FLASHING RED \\
\hline 022 & DIS SIGN & DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER \\
\hline 023 & DIS OFCR & DISREGARDED POLICE OFFICER OR FLAGMAN \\
\hline 024 & DIS EMER & DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE \\
\hline 025 & DIS RR & DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN \\
\hline 026 & REAR-END & FAILED TO AVOID Stopped or parked vehicle ahead other than School bus \\
\hline 027 & BIKE ROW & DID NOT HAVE RIGHT-OF-WAY OVER PEDALCYCLIST \\
\hline 028 & NO ROW & DID NOT HAVE RIGHT-OF-WAY \\
\hline 029 & PED ROW & FAILED TO YIELD RIGHT-OF-WAY TO PEDESTRIAN \\
\hline 030 & PAS CURV & PASSING ON A CURVE \\
\hline 031 & PAS WRNG & PASSING ON THE WRONG SIDE \\
\hline 032 & PAS TANG & PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS \\
\hline 033 & PAS X -WK & PASSED VEHICLE Stopped at crosswalk for pedestrian \\
\hline 034 & PAS INTR & PASSING AT INTERSECTION \\
\hline 035 & PAS HILL & PASSING ON CREST OF HILL \\
\hline 036 & N/PAS ZN & PASSING IN "NO PASSING" ZONE \\
\hline 037 & PAS TRAF & PASSING IN FRONT OF ONCOMING TRAFFIC \\
\hline 038 & CUT-IN & CUTTING IN (TWO LANES - TWO WAY ONLY) \\
\hline 039 & WRNGSIDE & DRIVING ON WRONG SIDE OF THE ROAD (2-WAY UNDIVIDED ROADWAYS) \\
\hline 040 & THRU MED & DRIVING THROUGH SAFETY ZONE OR OVER ISLAND \\
\hline 041 & F/ST BUS & FAILED TO STOP FOR SCHOOL BUS \\
\hline
\end{tabular}

\section*{ERROR CODE TRANSLATION LIST}
\begin{tabular}{lll}
ERROR & SHORT & \\
CODE & DESCRIPTION & FULL DESCRIPTION \\
\hline 042 & F/SLO MV & FAILED TO DECREASE SPEED FOR SLOWER MOVING VEHICLE \\
043 & TOO CLOSE & FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT) \\
044 & STRDL LN & STRADDLING OR DRIVING ON WRONG LANES \\
045 & IMP CHG & IMPROPER CHANGE OF TRAFFIC LANES \\
046 & WRNG WAY & WRONG WAY ON ONE-WAY ROADAY; WRONG SIDE DIVIDED ROAD \\
047 & BASCRULE & DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED) \\
048 & OPN DOOR & OPENED DOOR INTO ADJACENT TRAFFIC LANE \\
049 & IMPEDING & IMPEDING TRAFFIC \\
050 & SPEED & DRIVING IN EXCESS OF POSTED SPEED \\
051 & RECKLESS & RECKLESS DRIING (PER PAR) \\
052 & CARELESS & CARELESS DRIVING (PER PAR) \\
053 & RACING & SPEED RACING (PER PAR) \\
054 & X N/SGNL & CROSSING AT INTERSECTION, NO TRAFFIC SIGNAL PRESENT \\
055 & X W/SGNL & CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT \\
056 & DIAGONAL & CROSSING AT INTERSECTION - DIAGONALLY \\
057 & BTWN INT & CROSSING BETWEEN INTERSECTIONS \\
059 & W/TRAF-S & WALKING, RUNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC \\
060 & A/TRAF-S & WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFIC \\
061 & W/TRAF-P & WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC \\
062 & A/TRAF-P & WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC \\
063 & PLAYINRD & PLAYING IN STREET OR ROAD \\
064 & PUSH MV & PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER \\
065 & WORK IN RD & WORKING IN ROADWAY OR ALONG SHOULDER \\
070 & LAY ON RD & STANDING OR LYING IN ROADWY \\
071 & NM IMP USE & IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST \\
073 & ELUDING & ELUDING / ATTEMPT TO ELUDE \\
079 & F NEG CURV & FAILED TO NEGOTIATE A CURVE \\
\(080 ~\) & FAIL LN & FAILED TO MAINTAIN LANE \\
\(081 ~\) & OFF RD & RAN OFF ROAD \\
082 & NO CLEAR & DRIVER MISJUDGED CLEARANCE \\
083 & OVRSTEER & OVER-CORRECTING \\
084 & NOT USED & CODE NOT IN USE \\
085 & OVRLOAD & OVERLOADING OR IMPROPER LOADING OF VEHICLE WITH CARGO OR PASSENGEERS \\
097 & UNA DIS TC & UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 001 & FEL/JUMP & OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEHICLE \\
\hline 002 & INTERFER & PASSENGER INTERFERED WITH DRIVER \\
\hline 003 & BUG INTF & ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER \\
\hline 004 & Indrct ped & PEDESTRIAN INDIRECTLY INVOLVED (NOT STRUCK) \\
\hline 005 & SUB-PED & "SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC. \\
\hline 006 & INDRCT BIK & PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK) \\
\hline 007 & HITCHIKR & HITCHHIKER (SOLICITING A RIDE) \\
\hline 008 & PSNGR TOW & PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE \\
\hline 009 & on/ofe V & GEtting on/off Stopped/parked vehicle (occupants only; must have physical contact w/ vehic \\
\hline 010 & SUB OTRN & OVERTURNED AFTER FIRST HARMFUL EVENT \\
\hline 011 & MV PUSHD & VEHICLE BEING PUSHED \\
\hline 012 & MV TOWED & VEHICLE TOWED OR HAD BEEN TOWING ANOTHER VEHICLE \\
\hline 013 & FORCED & VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN \\
\hline 014 & SET MOTN & VEHICLE SET IN MOTION BY NON-DRIVER (CHILD RELEASED BRAKES, ETC.) \\
\hline 015 & RR ROW & AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL) \\
\hline 016 & LT RL ROW & AT OR ON LIGHT-RAIL RIGHT-OF-WAY \\
\hline 017 & RR HIT V & TRAIN STRUCK VEhicle \\
\hline 018 & V HIT RR & VEHICLE StRUCK TRAIN \\
\hline 019 & HIT RR CAR & VEHICLE STRUCK RAILROAD CAR ON ROADWA \\
\hline 020 & JACKNIFE & JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE \\
\hline 021 & TRL OTRN & TRAILER OR TOWED VEHICLE OVERTURNED \\
\hline 022 & CN BROKE & TRAILER CONNECTION BROKE \\
\hline 023 & DETACH TRL & DETACHED TRAILING OBJECT STRUCK OTHER VEHICLE, NON-MOTORIST, OR OBJECT \\
\hline 024 & V DOOR OPN & VEHICLE DOOR OPENED INTO ADJACENT TRAFFIC LANE \\
\hline 025 & WHEELOFF & WHEEL CAME OFF \\
\hline 026 & HOOD UP & HOOD FLEW UP \\
\hline 028 & LOAD SHIFT & LOST LOAD, LOAD MOVED OR SHIFTED \\
\hline 029 & TIREFAIL & TIRE FAILURE \\
\hline 030 & PET & PET: CAT, DOG And SIMILAR \\
\hline 031 & LVSTOCK & StOCK: COW, CALF, BULL, STEER, SHEEP, ETC. \\
\hline 032 & HORSE & HORSE, MULE, OR DONKEY \\
\hline 033 & HRSE\&RID & HORSE AND RIDER \\
\hline 034 & GAME & WILD ANIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK) \\
\hline 035 & DEER ELK & DEER OR ELK, WAPITI \\
\hline 036 & ANML VEH & ANIMAL-DRAWN VEHICLE \\
\hline 037 & CuLVERT & CULVERT, OPEN LOW OR HIGH MANHOLE \\
\hline 038 & Atenuatn & IMPACT ATTENUATOR \\
\hline 039 & PK METER & PARKING METER \\
\hline 040 & CURB & CURB (ALSO NARROW SIDEWALKS ON BRIDGES) \\
\hline 041 & JIGGLE & JIGGLE BAR OR TRAFFIC SNAKE FOR CHANNELIZATION \\
\hline 042 & GDRL END & LeAding edge of guardrail \\
\hline 043 & GARDRAIL & GUARD RAIL (NOT METAL MEDIAN BARRIER) \\
\hline 044 & BARRIER & MEDIAN BARRIER (RAISED OR METAL) \\
\hline 045 & WALL & REtAINING WALL OR TUNNEL WALL \\
\hline 046 & BR RAIL & BRIDGE RAILING OR PARAPET (O (BRIDGE OR APPROACH) \\
\hline 047 & BR ABUTMNT & BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013) \\
\hline 048 & BR COLMN & BRIDGE PILLAR OR COLUMN \\
\hline 049 & BR GIRDR & BRIDGE GIRDER (HORIZONTAL BRIDGE STRUCTURE OVERHEAD) \\
\hline 050 & ISLAND & TRAFFIC RAISED ISLAND \\
\hline 051 & GORE & GORE \\
\hline 052 & POLE UNK & POLE - TYPE UNKNOWN \\
\hline 053 & POLE UTL & POLE - POWER OR TELEPHONE \\
\hline 054 & ST LIGHT & POLE - StReet light only \\
\hline 055 & TRF SGNL & POLE - TRAFFIC SIGNAL AND PED SIGNAL ONLY \\
\hline 056 & SGN BRDG & POLE - SIGN BRIDGE \\
\hline 057 & STOPSIGN & STOP OR YIELD SIGN \\
\hline 058 & OTH SIGN & OTHER SIGN, INCLUDING STREET SIGNS \\
\hline 059 & HYDRANT & HYDRANT \\
\hline
\end{tabular}

\title{
event code translation list
}
\begin{tabular}{|c|c|c|}
\hline EVENT
CODE & \begin{tabular}{l}
SHORT \\
DESCRIPTION
\end{tabular} & LONG DESCRIPTION \\
\hline 060 & MARKER & DELINEATOR OR MARKER (REFLECTOR POSTS) \\
\hline 061 & MAILBOX & MAILBOX \\
\hline 062 & TREE & TREE, STUMP OR SHRUBS \\
\hline 063 & VEG OHED & TREE BRANCH OR Other vegetation overhead, etc. \\
\hline 064 & WIRE/CBL & WIRE OR CABLE ACROSS OR OVER THE ROAD \\
\hline 065 & TEMP SGN & TEMPORARY SIGN OR BARRICADE IN ROAD, ETC. \\
\hline 066 & PERM SGN & PERMANENT SIGN OR BARRICADE IN/OFF ROAD \\
\hline 067 & SLIDE & SLIDES, FALLEN OR FALLING ROCKS \\
\hline 068 & FRGN OBJ & FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL) \\
\hline 069 & EQP WORK & EQUIPMENT WORKING IN/OFF ROAD \\
\hline 070 & OTH EQP & OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT) \\
\hline 071 & MAIN EQP & WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT \\
\hline 072 & OTHER WALL & ROCK, BRICK OR OTHER SOLID WALL \\
\hline 073 & IRRGL PVMT & OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR) \\
\hline 074 & OVERHD OBJ & OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE \\
\hline 075 & CAVE IN & BRIDGE OR ROAD CAVE IN \\
\hline 076 & HI WATER & high water \\
\hline 077 & SNO BANK & SNOW BANK \\
\hline 078 & LO-HI EDGE & LOW OR HIGH Shoulder at pavement Edge \\
\hline 079 & DITCH & CUT SLOPE OR DITCH EMBANKMENT \\
\hline 080 & OBJ FRM MV & STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS) \\
\hline 081 & FLY-OBJ & STRUCK BY Rock OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE) \\
\hline 082 & VEH HID & VEHICLE OBSCURED VIEW \\
\hline 083 & VEG HID & VEGETATION OBSCURED VIEW \\
\hline 084 & BLDG HID & VIEW OBSCURED BY FENCE, SIGN, PHONE BOOTH, ETC. \\
\hline 085 & WIND GUST & WIND GUST \\
\hline 086 & IMMERSED & VEHICLE IMMERSED IN BODY OF WAter \\
\hline 087 & FIRE/EXP & FIRE OR EXPLOSION \\
\hline 088 & FENC/BLD & FENCE OR BUILDING, ETC. \\
\hline 089 & OTHR CRASH & CRASH RELATED TO ANOTHER SEPARATE CRASH \\
\hline 090 & TO 1 SIDE & TWO-WAY TRAFFIC ON DIVIDED ROADWAY ALL Routed to one side \\
\hline 091 & BuILDIng & BUILDING OR OTHER STRUCTURE \\
\hline 092 & PHANTOM & OTHER (PHANTOM) NON-CONTACT VEHICLE \\
\hline 093 & CELL PHONE & CELL PHONE (ON PAR OR DRIVER IN USE) \\
\hline 094 & VIOL GDL & teenage driver in violation of graduated license pgm \\
\hline 095 & GUY WIRE & GUY WIRE \\
\hline 096 & BERM & BERM (EARTHEN OR GRAVEL MOUND) \\
\hline 097 & GRAVEL & GRAVEL IN ROADWAY \\
\hline 098 & ABR EDGE & ABRUPT EDGE \\
\hline 099 & CELL WTNSD & CELL PHONE USE WITNESSED BY OTHER PARTICIPANT \\
\hline 100 & UNK FIXD & FIXED OBJECT, UNKNOWN TYPE. \\
\hline 101 & OTHER OBJ & NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE \\
\hline 102 & TEXTING & texting \\
\hline 103 & WZ WORKER & WORK ZONE WORKER \\
\hline 104 & ON VEHICLE & PASSENGER RIDING ON VEHICLE EXTERIOR \\
\hline 105 & PEDAL PSGR & PASSENGER RIDING ON PEDALCYCLE \\
\hline 106 & MAN WHLCHR & PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR \\
\hline 107 & MTR WHLCHR & PEDESTRIAN IN MOTORIZED WHEELCHAIR \\
\hline 108 & OFFICER & LAW ENFORCEMENT / POLICE OFFICER \\
\hline 109 & SUB-BIKE & "SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC. \\
\hline 110 & N-MTR & NON-MOTORIST STRUCK VEHICLE \\
\hline 111 & S CAR VS V & Street Car/Trolley (ON RAILS OR OVERHEAD WIRE SYSTEM) STRUCK VEhICle \\
\hline 112 & V VS S CAR & VEHICLE STRUCK STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM) \\
\hline 113 & S CAR ROW & AT OR ON STREET CAR OR TROLLEY RIGHT-OF-WAY \\
\hline 114 & RR EQUIP & VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS \\
\hline 115 & DSTRCT GPS & DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE \\
\hline 116 & DSTRCT OTH & DISTRACTED BY OTHER ELECTRONIC DEVICE \\
\hline 117 & RR GATE & RAIL CROSSING DROP-ARM GATE \\
\hline
\end{tabular}
```

EVENT SHORT
118 EXPNSN JNT
119 JERSEY BAR JERSEY BARRIER
120 WIRE BAR
123 OBJ IN VEH
124 SLIPPERY
124 SLIPPER
126 BOULDER
127 LAND SLIDE
28 CURVE INV
129 HILL INV
130 CURVE HID
131 HILL HID
132 WINDOW HID
WIRE
FENCE
LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT
SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL)
SHOULDER GAVE WAY
ROCK SLIDE OR LAND SLIDE
CURVE PRESENT AT CRASH LOCATION
VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION
VIEW OBSCURED BY CURVE
VIEW OBSCURED BY VERTICAL GRADE / HILI
VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS
VIEW OBSCURED BY WATER SPRAY

```

\section*{FUNC}

\section*{CLASS DESCRIPTION}

RURAL PRINCIPAL ARTERIAL - INTERSTATE
RURAL PRINCIPAL ARTERIAL - OTHER
RURAL MINOR ARTERIAL
RURAL MAJOR COLLECTO
RURAL MINOR COLLECTOR
RURAL LOCAL
URBAN PRINCIPAL ARTERIAL - INTERSTATE
URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXP
URBAN PRINCIPAL ARTERIAL - OTHER
URBAN MINOR ARTERIAL
URBAN MAJOR COLLECTOR
8 URBAN MINOR COLLECTOR
19 URBAN LOCAL
78 UNKNOWN RURAL SYSTEM
79 UNKNOWN RURAL NON-SYSTEM
9 UNKNOWN URBA SYSTEM
99 UNKNOWN URBAN NON-SYSTEM

\section*{INJURY SEVERITY CODE TRANSLATION LIST}

\section*{SHOR}
\begin{tabular}{cll}
CODE & DESC & LONG DESCRIPTION \\
\hline 1 & KILL & FATAL INJURY \\
2 & INJA & INCAPANITATING INJURY - BLEEDING, BROKEN BONES \\
3 & INJB & NON-INCAPACITATING INJURY \\
4 & INJC & POSSIBLE INJURY - COMPLAINT OF PAIN \\
5 & PRI & DIED PRIOR TO CRASH \\
7 & NO<5 & NO INJURY - 0 TO 4 YEARS OF AGE
\end{tabular}

\section*{MEDIAN TYPE CODE TRANSLATION LIST}
\begin{tabular}{cll}
CODE & \begin{tabular}{l}
SHORT \\
DESC
\end{tabular} & LONG DESCRIPTION \\
\hline 0 & NONE & NO MEDIAN \\
1 & RSDMD & SOLID MEDIAN BARRIER \\
2 & DIVMD & EARTH, GRASS OR PAVED MEDIAN
\end{tabular}

MILEAGE TYPE CODE TRANSLATION LIST
\begin{tabular}{cl}
CODE & LONG DESCRIPTION \\
\hline 0 & REGULAR MILEAGE \\
T & TEMPORARY \\
Y & SPUR \\
\(Z\) & OVERLAPPING
\end{tabular}

MOVEMENT TYPE CODE TRANSLATION LIST
\begin{tabular}{cll}
CODE & \begin{tabular}{l}
SHORT \\
DESC
\end{tabular} & LONG DESCRIPTION \\
\hline 0 & UNK & UNKNOWN \\
1 & STRGHT & STRAIGHT AHEAD \\
2 & TURN-R & TURNING RIGHT \\
3 & TURN-L & TURNING LEFT \\
4 & U-TURN & MAKING A U-TURN \\
5 & BACK & BACKING \\
6 & STOP & STOPPED IN TRAFFIC \\
7 & PRKD-P & PARKED - PROPERLY \\
8 & PRKD-I & PARKED - IMPROPERLY
\end{tabular}

\section*{pedestrian location code translation list}
\begin{tabular}{cl}
CODE & LONG DESCRIPTION \\
\hline 00 & AT INTERSECTION - NOT IN ROADWAY \\
01 & AT INTERSECTINN - INSIDE CROSSWALK \\
02 & AT INTERSECTION - IN ROADWAY, OUTSIDE CROSSWALK \\
03 & AT INTERSECTION - IN ROADWAY, XWALK AVAIL UNKNWN \\
04 & NOT AT INTERSECTION - IN ROADWAY \\
05 & NOT AT INTERSECION - ON SHOULDER \\
06 & NOT AT INTERECTION - ON MEDIAN \\
07 & NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY \\
08 & NOT AT INTERSECTION - IN BIKE PATH OR PARKING LANE \\
09 & NOT-AT INTERSECTION - ON SIDWALK \\
10 & OUTSIDE TRAFFICWAY BOUNDARIES \\
13 & AT INTERSECTION - IN BIKE LANE \\
14 & NOT AT INTERSECTION - IN BIKE LANE \\
15 & NOT AT INTERSECTION - INSIDE MID-BLOCK CROSSWALK \\
16 & NOT AT INTERSECTION - IN PARKING LANE
\end{tabular}

ROAD CHARACTER CODE TRANSLATION LIST

\section*{SHOR}
\begin{tabular}{lll}
& SHORT \\
CODE & DESC & LONG DESCRIPTION
\end{tabular}
\begin{tabular}{ll}
UNK & UNKNOWN \\
INTER & INTERSECTION
\end{tabular}

DRIVEWAY OR ALLEY
STRAIGHT ROADWAY
TRANSITION
CURVE (HORIZONTAL CURVE OPEN ACCESS OR TURNOU GRADE (VERTICAL CURVE
BRIDGE STRUCTURE
TUNNEL

PARTICIPANT TYPE CODE TRANSLATION LIST
\begin{tabular}{cll}
CODE & \begin{tabular}{l}
SHORT \\
DESC
\end{tabular} & LONG DESCRIPTION \\
\hline 0 & OCC & UNKNOWN OCCUPANT TYPE \\
1 & DRVR & DRIVER \\
2 & PSNG & PASSENGER \\
3 & PED & PEDESTRIAN \\
4 & CONV & PEDESTRIAN USING A PEDESTRIAN CONVEYA: \\
5 & PTOW & PEDESTRIAN TOWING OR TRAILERING AN OB \\
6 & BIKE & PEDALCYCLIST \\
7 & BTOW & PEDALCYCLIST TOWING OR TRAILERING AN \\
8 & PRKD & OCCUPANT OF A PARKED MOTOR VEINGLE \\
9 & UNK & UNKNOWN TYPE OF NON-MOTORIST
\end{tabular}

TRAFFIC CONTROL DEVICE CODE TRANSLATION LIST
\begin{tabular}{cll}
CODE & SHORT DESC & LONG DESCRIPTION \\
\hline 000 & NONE & NO CONTROL \\
001 & TRF SIGNAL & TRAFFIC SIGNALS \\
002 & FLASHBCN-R & FLASHING BEACON - RED (STOP) \\
003 & FLASHBCN-A & FLASHING BEACON - AMBER (SLOW) \\
004 & STOP SIGN & STOP SIGN \\
005 & SLOW SIGN & SLOW SIGN \\
006 & REG-SIGN & REGULATORY SIGN \\
007 & YIELD & YIELD SIGN \\
008 & WARNING & WARNING SIGN \\
009 & CURVE & CURVE SIGN \\
010 & SCHL X-ING & SCHOOL CROSSING SIGN OR SPECIAL SIGNAL \\
011 & OFCR/FLAG & POLICE OFFICER, FLAGMAN - SCHOOL PATROL \\
012 & BRDG-GATE & BRIDGE GATE - BARRIER \\
013 & TEMP-BARR & TEMPORARY BARRIER \\
014 & NO--ASS-ZN & NO PASSING ZONE \\
015 & ONE-WAY & ONE-WAY STREET \\
016 & CHANNEL & CHANNELIZATION \\
017 & MEDIAN BAR & MEDIAN BARRIER \\
018 & PILOT CAR & PILOT CAR \\
019 & SP PED SIG & SPECIAL PEDESTRIAN SIGNAL \\
020 & X-BUCK & CROSSBUCK \\
021 & THRGN-SIG & THROUGH GREEN ARROW OR SIGNAL \\
022 & L-GRN-SIG & LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL \\
023 & R-GRN-SIG & RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL \\
024 & WIGWAG & WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE \\
025 & X-BUCK WRN & CROSSBUCK AND ADVANCE WARNING \\
026 & WWW W/ GATE & FLASHING LIGHTS WITH DROP-ARM GATES \\
027 & OVRHD SGNL & SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY) \\
028 & SP RR STOP & SPECIAL RR STOP SIGN \\
029 & ILUM GRD X & ILLUMINATED GRADE CROSSING \\
037 & RAMP METER & METERED RAMPS \\
038 & RUMBLE STR & RUMBLE STRIP \\
090 & L-TURN REF & LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED) \\
091 & R-TURN ALL & RIGHT TURN AT ALL TIMES SIGN, ETC. \\
092 & EMR SGN/FL & EMERGENCY SIGNS OR FLARES \\
093 & ACCEL LANE & ACCELERATION OR DECELERATION LANES \\
094 & R-TURN PRO & RIGHT TURN PROHIBITED ON RED AFTER STOPPING
\end{tabular}

\section*{WEATHER CONDITION CODE TRANSLATION LIST}
\begin{tabular}{cll}
CODE & SHORT DESC & LONG DESCRIPTION \\
\hline 00 & PDO & NOT COLLECTED FOR PDO CRASHES \\
01 & PSNGR CAR & PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC. \\
02 & BOBTAIL & TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL) \\
03 & FARM TRCTR & FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT \\
04 & SEMI TOW & TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW \\
05 & TRUCK & TRUCK WITH NON-DETACHABLE BED, PANEL, ETC. \\
06 & MOPED & MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE \\
07 & SCHL BUS & SCHOOL BUS (INCLUDES VAN) \\
08 & OTH BUS & OTHER BUS \\
09 & MTRCYCLE & MOTORCYCLE, DIRT BIKE \\
10 & OTHER & OTHER: FORKLIFT, BACKHOE, ETC. \\
11 & MOTRHOME & MOTORHOME \\
12 & TROLLEY & MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES) \\
13 & ATV & ATV \\
14 & MTRSCTR & MOTORIZED SCOOTER (STANDING) \\
15 & SNOWMOBILE & SNOWMOBILE \\
99 & UNKNOWN & UNKNOWN VEHICLE TYPE
\end{tabular}
\begin{tabular}{cll}
CODE & SHORT & DESC \\
\hline 0 & UNK & LONG DESCRIPTION \\
1 & CLR & UNKNOWN \\
2 & CLLD & CLEAR \\
3 & RAIN & RAIN \\
4 & SLT & SLEET \\
5 & FOG & FOG \\
6 & SNOW & SNOW \\
7 & DUST & DUST \\
8 & SMOK & SMOKE \\
9 & ASH & ASH \\
& & \\
& & \\
& &
\end{tabular}```

[^0]: 1. Bicycle Collision
[^1]: Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result
 from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

