CURRY COUNTY TRANSPORTATION SYSTEM PLAN

TECHNICAL MEMORANDUM \#5

Date: July 31, 2023
Project \#: 23021.050
To: Project Management Team (PMT)
From: Kittelson \& Associates, Inc.
Project: Curry County Transportation System Plan Update
Subject: Final Tech Memo \#5: Future Baseline (No Build)

INTRODUCTION

The future baseline (no-build) analysis for the Curry County Transportation System Plan (TSP) Update assesses how the County's transportation system is anticipated to perform through the planning horizon, year 2042. The transportation network changes that are currently planned and/or funded are identified in this memorandum and accounted for in the future (no-build) analysis, as appropriate. The network changes will also be considered later in future analyses of possible transportation alternatives. The future baseline no-build assessment also assumes that the transportation system will serve the County's continued economic growth that is consistent with its Comprehensive Plan land use designations.

This memorandum summarizes the future baseline (no-build) transportation conditions for people walking, rolling, biking, using transit, and driving within Curry County. It includes information on planned and/or funded transportation system improvements, forecast traffic volumes, the results of the future transportation system operations, freight, and multimodal analyses, and the traffic safety needs previously presented in Technical Memorandum \#4 (Current Transportation System Operations). A summary of future deficiencies is provided throughout this memorandum.

The information provided herein addresses the requirements identified in Oregon Administrative Rule 660-012-020 (Elements of a Transportation System Plan) for providing a general assessment of committed transportation facilities and services. This information will also help advise on potential transportation system changes needed to support the TSP's goals and the County's vision and be used as a foundation to:

- Help the County understand the effectiveness of potential projects, policies, and programs; and,
- Help policy makers weigh trade-offs regarding future funding priorities that support continued economic growth in a safe, sustainable, fundable, and diverse manner.

EXECUTIVE SUMMARY

Key findings from the future baseline (no build) assessment presented within this memorandum are summarized below.

Population Projections

- Curry County's population is estimated to grow by approximately 0.24 percent per year over the next 20 years, mostly due to population increases within the cities of Brookings, Gold Beach, and Port Orford.

Programmed Transportation Projects

- The Oregon Department of Transportation (ODOT) has a variety of projects programmed for Curry County in its 2021-2024 and 2024-2027 Statewide Transportation Improvement Programs (STIP), primarily along US 101. The projects include variable message sign upgrades, bike lanes and sidewalks, pavement repair, curb ramp installation, rockfall protection, fire rehabilitation, bridge repairs / replacements (including the County's Myrtle Creek Bridge that has a sufficiency rating below 50), fast charging electric vehicle infrastructure, intersection and roadway safety improvements, and landslide/drainage improvements.
- The County's 2021-2027 Capital Improvement Plan (CIP) identifies various roadway projects for its transportation system, including retaining wall systems, drainage improvements, pavement repair, roadway widening and/or reconstruction, driveway repairs, curb ramps, and intersection improvements.
- The County's 2021-2027 CIP also identifies various bridge repair or replacement projects for several of its bridges that are structurally deficient, have sufficiency ratings below 50, are scour critical, are weight restricted, or are a combination of these characteristics.

Future Transportation System Operations

- Future traffic volumes along US 101 are expected to grow by approximately 5 to 13 percent over the next 20 years depending on the location. The segment with the highest growth includes the area between Brookings and Gold Beach.
- All study intersections are expected to meet their applicable mobility targets during the evening peak hour under future 2042 traffic conditions (the US 101 / Winchuck River Road-Ocean View Drive intersection continues to experience the highest side-street delay).
- All available vehicle storage is adequate to serve the expected traffic volume queues during the evening peak hour under future 2042 traffic conditions.
- Non-motorized pedestrian and bicycle movements are expected to stay generally low at the study intersections under future 2042 traffic conditions.

Future Safety Conditions

- Traffic safety is expected to worsen over time if vehicular, pedestrian, and bicycle volumes increase and if no changes are made to the transportation system.
- 59% of the 928 reported crashes (2017-2021) resulted in some level of injury, including 59 serious injury crashes; 39% of all crashes were with a fixed or other object; 22 of the crashes included pedestrians and 8 included bicyclists (resulting in 5 fatal crashes)
- US 101 / Floras Creek Road intersection crash rate - 0.23 - is approaching its critical crash rate threshold - 0.28.
- 44 roadway segments have observed crash rates that exceed statewide averages.

Future Multimodal Conditions

- The County's existing bicycle and pedestrian network, which generally lacks walking and biking facilities, is expected to remain the same through 2042, except for the few bike lane and sidewalk projects outlined in the ODOT STIP and County CIP.
- Bicycle Level of Traffic Stress (BLTS) scores on arterials and collectors are expected to remain the same (primarily BLTS 2 and 3) through year 2042 based on forecast traffic volumes, except for short sections of S Bank Chetco River Road, N Bank Chetco River Road, and Sixes River Road.
- The Pedestrian QMA ratings on arterials and collectors are expected to remain the same (generally "poor") if no changes are made to the transportation system.
- Current safety risks to bicyclists and pedestrians are expected to remain the same if no changes are made to the transportation system: relatively high risk for bicyclists along US 101, and highest in Brookings, and greatest risk for pedestrians on US 101 near Airport Road, within the incorporated cities, and near Cape Sebastian and Pistol River.
- Transit services and facilities in the county have a "Fair" Transit Qualitative Multimodal Assessment (QMA) rating primarily due to frequency of service. The transit opportunities identified in the recently adopted Curry Public Transit (CPT) Transit Development Plan (TDP) could affect future transit operations.

Future Freight Operations

- Freight conditions, including freight designations, restrictions, and pinch points, will be considered in the upcoming alternatives analysis as possible roadway solutions are developed.

POPULATION PROJECTIONS

The Portland State University (PSU) Population Research Center (PRC) produces population forecasts for Oregon counties and their incorporated cities on a four-year cycle. The forecasts play an important role in understanding the potential for traffic volume growth in the county and determining the transportation facilities and services needed to support growth over the next 20 years. Table 1 summarizes PSU's current population forecasts for Curry County and the cities of Brookings, Gold Beach, and Port Orford through 2045. As shown, the county's population is estimated to grow by approximately 0.24 percent per year; however, most of the growth is expected to occur within the urban growth boundaries (UGB's) of the incorporated cities. Outside of the UGB's, the county's population is projected to decrease over time.

Table 1. PSU Population Projections (2022-2045)

Location	$\mathbf{2 0 2 2}$	$\mathbf{2 0 2 5}$	$\mathbf{2 0 3 0}$	$\mathbf{2 0 3 5}$	$\mathbf{2 0 4 0}$	$\mathbf{2 0 4 5}$	Average Annual Growth Rate
Countywide	$\mathbf{2 3 , 7 9 0}$	$\mathbf{2 4 , 0 6 6}$	$\mathbf{2 4 , 4 2 9}$	$\mathbf{2 4 , 6 9 8}$	$\mathbf{2 4 , 8 8 1}$	$\mathbf{2 5 , 1 0 6}$	$\mathbf{0 . 2 4 \%}$
Brookings	11,861	12,051	12,322	12,589	12,884	13,281	0.52%
Gold Beach	3,361	3,382	3,403	3,436	3,501	3,624	0.34%
Port Orford	1,811	1,803	1,782	1,770	1,777	1,816	0.01%
Outside UGB's	6,757	6,829	6,923	6,903	6,719	6,384	-0.24%

PROGRAMMED TRANSPORTATION PROJECTS

The following section summarizes transportation projects that are identified for Curry County's transportation system in the Statewide Transportation Improvement Program (STIP) and the County's Capital Improvement Plan (CIP). These programmed improvements will be considered as part of upcoming evaluations of potential transportation alternatives to address identified needs. Other relevant projects that are included in long-range transportation plans, such as the County's previous (2005) TSP and recently adopted Transit Development Plan (TDP), will be identified in the upcoming alternatives analysis and considered as part of the evaluation.

Statewide Transportation Improvement Program (STIP)

The Statewide Transportation Improvement Program (STIP) is ODOT's four-year funding program for transportation improvement projects on state and regional transportation systems, including federal land and Indian reservation road systems, interstate, state, and regional highways, bridges, and public transit. It includes state and federally funded system improvements that have approved funding and are expected to be undertaken during the upcoming four-year period. The projects undergo a selection process every two years that is managed by ODOT Regions or central offices to update the STIP.
An expected outcome of the TSP Update process is proposing that the STIP be amended to include projects in the plan. The STIP projects will most likely involve improvements that are eligible for funding through the ODOT Enhance program, which awards funding through a competitive application process. A list of relevant projects identified in the current STIP (20212024) are shown in Table 2. ODOT's draft 2024-2027 STIP projects, also summarized in Table 2, are also available but awaiting approval following federal review.

Table 2. 2021-2024 and 2024-2027 STIP Projects for Curry County

Project Name	Description	Type	Total Project Cost	2023 Status
2021-2024 Projects				
US 101/OR 38: Variable Message Sign Upgrades	Replace existing hazard warning system with LED-based variable message (VMS) system to increase visibility to the traveling public	Preliminary Engineering, Construction	\$2,022,871	Construction Complete
US 101: Parkview Dr - Lucky Ln (Brookings)'	Construct a bike lane and a sidewalk along the east side of US101 and replace deficient sidewalk, add a short segment of sidewalk on Ransom St, add flashing lights at Ransom Ave and Arnold Ave, and convert a 4-lane section to 3-lane from Heather Ln to Arnold Ln to improve pedestrian safety.	Preliminary Engineering, Right of Way, Utility Relocation, Construction	\$4,962,000	Construction Scheduled for 2024
US 101: Garrison Slough - Cemetery Loop Rd (Port Orford)	Remove existing pavement and replace with new; upgrade ADA ramps; add curb extensions, pedestrian signals, and sign and illumination upgrades	Preliminary Engineering, Right of Way, Construction, Other	\$6,975,668	Under Construction
US 101: Gold Beach (Rogue River) Bridge ${ }^{1}$	Replace the existing cathodic protection system, a technique used to control the corrosion of a metal surface, to preserve the bridge structure.	Preliminary Engineering, Right of Way, Utility Relocation, Construction	\$25,141,000	Construction Scheduled for 2024
US 101: Floras Creek and Willow Creek Bridges ${ }^{1}$	Replace the bridge rails on Floras Creek and Willow Creek structures to meet current safety standards. Replace the driving surfaces and joints on each bridge. Remove asphalt from the Willow Creek bridge and adjust the substructure of the roadway to match.	Preliminary Engineering, Right of Way, Utility Relocation, Construction	\$5,107,000	Construction Scheduled for 2024
US 101: Arizona Slide	Geological investigation for historical data collection, drilling, drain inspections, and recommendations to provide guidance for a future project.	Planning	\$512,313	Planning Complete
Klondike Fire Rehab	Restore approximately 45 -miles of trails impacted by the Taylor and Klondike Fires	Other	\$119,746	Complete
Arizona Ranch Rd: Myrile Creek Bridge	Design for a future construction project to replace the bridge with a modern bridge type of sufficient width to increase safety and improve access.	Preliminary Engineering	\$514,800	Project Funded Through Final Plans
Southwest Oregon 20242027 ADA Curb Ramp Design, Phase 1	Design for future construction of curb ramps to meet compliance with the Americans with Disabilities Act (ADA) standards.	Preliminary Engineering	\$5,500,000	Project Funded Through Final Plans
2024-2027 Draft Projects				
US 101: Washington to Calfifornia	Install National Vehicle Infrastructure (NEVI) fast charging stations at 50 -mile intervals along US 101 between Washington and California.	Planning, Preliminary Engineering, Construction	\$6,281,000	Construction Scheduled for 2025
Southwest Oregon Rural Intersection Safeły Improvements	Install signs to provide a safer roadway to the traveling public in ODOT Region 3.	Preliminary Engineering, Construction	\$3,119,988	Construction Scheduled for 2025
Southwest Oregon 20242027 ADA Curb	Design for future construction of curb ramps to meet compliance ADA standards.	Preliminary Engineering	\$8,316,400	Project Funded

Project Name	Description	Type	Total Projecł Cost	2023 Status
Ramp Design, Phase 2				Through Final Plans
Highway Barrier Upgrades (Coos/ Curry)	Replace the barrier on highways in Coos and Curry counties to improve safety on the roadway for the traveling public.	Preliminary Engineering, Construction	\$3,578,485	Construction Scheduled for 2026
sw Oregon Safety Program Funding Reserve (FFY25- 27)	Funding reserved for federal fiscal year 20242027 for the Region 3 ARTS program.	Construction	\$1,195,529	Bucket of Funds
SW Oregon Preservation Program Funding Reserve (FFY25- 27)	Funding reserved for future preservation projects in the 2024-2027 STIP cycle.	Construction	\$1,163,235	Bucket of Funds
sW Oregon HB2017 Safety Program Funding Reserve (FFY2527)	Funding reserved for federal fiscal year 20242027 for the Region 3 HB2017 safety program.	Construction	\$143,554	Bucket of Funds
US101: Anderson Rockfall	Install rock protection screening to help prevent rock falling on roadway.	Preliminary Engineering, Construction	\$2,008,219	Construction Scheduled for 2024
Arizona Ranch Rd: Myrtle Creek Bridge	Replace the bridge with a wider and modern bridge to increase safety and improve access.	Preliminary Engineering, Right of Way, Utility Relocation, Construction	\$2,616,500	Construction Scheduled for 2026
US 101: Woodroof Creek Slide	Drainage improvements and pavement resurfacing to provide a safer roadway to the traveling public.	Preliminary Engineering, Right of Way, Construction	\$2,824,884	Construction Scheduled for 2027
US 101: Robin Lane to California State line	Design project to remove existing pavement and replace with new asphalt to extend pavement service life. Safety upgrades to install barrier. Repair culverts and replace bridge driving surfaces to improve safety for traveling public.	Preliminary Engineering	\$655,815	Project Funded Through Final Plans
Edson Creek "A" Bridge Rehab	Strengthen the existing bridge girders as needed to maintain the integrity of the bridge.	Preliminary Engineering, Construction	\$989,300	Construction Scheduled for 2026

'Project also identified in 2024-2027 Draft STIP

Curry County Capital Improvement Plan (CIP)

The Curry County 2021-2027 Capital Improvement Plan (CIP) addresses the transportation system and funding challenges facing the County. The CIP is a comprehensive guide for implementing essential transportation system improvements over a six-year period, including roadway and bridge maintenance needs for facilities within the County's jurisdiction. Recommended improvement projects in the current CIP were established through field evaluations, consideration of existing and planned development, input from the public, and Curry County Road Department Staff input. These projects are tabulated in detail in Attachment A and summarized in the following sections.

[^0]
CIP Roadway Projects

The County's CIP identifies these general types of projects for several of its roadways:

- Retaining wall systems
- Drainage improvements, including curbs and gutters and ditches
- Pavement repair, including chip sealing, asphalt overlay, and pothole repairs
- Roadway widening and/or reconstruction, driveway repairs, and curb ramps
- Intersection improvements, including sight distance enhancements and roundabouts
- Traffic control improvements, including various signage and fog line striping

Table 3 summarizes projects along County arterials and collectors that could address transportation needs that have been identified in Technical Memoranda \#3 (Update System Inventory) and \#4 (Current Transportation System Operations). Although not classified as arterials or collectors, the following local County roads, that have poor pavement conditions and/or do not meet roadway standards, are identified in the CIP for road repair/reconstruction, roadway widening, asphalt overlay or grind and inlay, and/or spot or pothole repairs:

- Hensley Hill Road (MP 0.24 to 1.12)
- "Poor" pavement condition rating (as of 11/17/22)
- Current pavement width is 23 feet (urban standard is $24-30$ feet)
- Azalea Lane in Port Orford (MP 0 to 0.08)
- "Very Poor" pavement condition rating (as of 8/18/09)
- Current pavement width is 15 feet (urban standard is 24-30 feet)
- Fairgrounds Road (MP 0.09-0.28)
- "Poor" to Very Poor" pavement condition rating (as of 11/9/22)
- Current pavement width is 12-22 feet (urban standard is 24-30 feet)
- Noble Drive (MP 0.67-0.83)
- "Very Poor" pavement condition rating (as of 10/4/18)
- Current pavement width is 17 feet (urban standard is $24-30$ feet)
- Azalea Lane in Gold Beach (Full Extents)
- Current pavement width is 28 feet (urban standard is 24-30 feet)

Table 3. 2021-2027 CIP Roadway Projects for Curry County Arterials and Collectors with Identified Needs

Project Name	Location (MP)	Description	Needs Idenifified in Tech Memo \#3 and/or Tech Memo \#4
Gardner Ridge Road	8.1	Retaining wall system to repair slide (outside travel lane)	Current Pavement Width: 21 Feet / Rural Standard: 24 Feet
Langlois Mountain Road	0-9.53	Road maintenance (isolated reconstruction areas / roadway chip sealing)	Current Pavement Width: 18-22 Feet / Rural Standard: 24 Feet
Old County Road	0.88-2.92	Chip seal / repair isolated areas / examine subbase for possible replacement	Current Pavement Width: 16-19 Feet / Rural Standard: 24 Feet
Old Coast Road	$0.74-2.55$	MP 0.737 to 1.734: pothole repair (ditch maintenance where necessary) MP 1.734 to 2.554: chip seal (isolated repair areas prior)	Current Pavement Width: 16 Feet / Rural Standard: 24 Feet
	$4.35-4.59$	Chip seal, road reconstruction at both project limits, and ditch installation on east side	Current Pavement Width: 12 Feet / Rural Standard: 24 Feet
Floras Creek Road	2.9	20-foot roadway widening (to the south), gabion style retaining wall, drainage improvements, and geotechnical investigation / environmental permitting	Current Pavement Width: 22 Feet / Rural Standard: 26 Feet
	3.31	Curve straightening and roadway widening to County standards and drainage improvements	Current Pavement Width: 22 Feet / Rural Standard: 26 Feet
	3.96	Gabion style retaining wall, roadway widening to County standards, roadway realignment, fog line striping, drainage improvements, and geotechnical investigation / environmental permitting	Current Pavement Width: 22 Feet / Rural Standard: 26 Feet
	$2.61-5.18$	Chip sealing, isolated areas of reconstruction, and fog line striping	Current Pavement Width: 22 Feet / Rural Standard: 26 Feet
Grizzly Mountain Road	0.39-1.34	Asphalt spot repairs, 2-inch overlay, drainage improvements, and fog line striping	Current Pavement Width: 14-20 Feet / Rural Standard: 24 Feet "Poor" PCI (MP 0.64 to 1.34 , as of 11/15/22)
Lower Harbor Road	$0.17-0.96$	5-foot-wide sidewalks, curb installation/relocation, retaining walls, ADA ramps, driveway approaches, drainage improvements, and utility relocation	No continuous sidewalks available today Urban Standard for Major Collectors: 6Foot Sidewalks
Agness-Illahe Road	$6.61-7.55$	Chip seal and repair turnoff at Illahe Lodge / other isolated areas prior to chip seal	Current Pavement Width: 18 Feet / Rural Standard: 24 Feet "Very Good" PCI (as of 11/15/22)
Lower Harbor / Shopping Center	0.68	80-foot roundabout, sidewalks, and possible right-of-way acquisition	Not Applicable
Lower Harbor / Commercial	0.12	80-foot roundabout, sidewalks, and possible right-of-way/structure acquisition	Not Applicable

[^1]
CIP Bridge Projects

Table 4 summarizes County bridge projects in the CIP that could address needs that have been identified in Technical Memoranda \#3 (Update System Inventory) and \#4 (Current Transportation System Operations).
Table 4. 2021-2027 CIP Projects for Curry County Bridges with Identified Needs

Project Name	ODOT Bridge ID	Carries	Crosses	Description	Needs Identified in Tech Memo \#3 and/or Tech Memo \#4
Morrill Bridge	15C26	Floras Creek Rd	Floras Creek (N Fork)	Replacement	Structurally Deficient / Sufficiency Rating < 50
Edson Creek "A" Bridge	15C004	Sixes River Rd	Edson Creek	Girder strengthening	Scour Critical; CIP project does NOT address need
Myritle Creek Bridge	15 Cl 5	Arizona Ranch Rd (Co. Road 500)	Myrtle Creek	Replacement	Scour Critical / Weight Restricted-Load Posted / Sufficiency Rating < 50
Willow Creek Bridge	15 Cl 2	Co. Road 136	Willow Creek (EB)	Replacement	Scour Critical / Sufficiency Rating < 50
Don Cameron Bridge	15 C 14	N Bank Chetco River Rd	N Fork Chetco River	Maintenance / Repair	Scour Critical / Sufficiency Rating < 50
Hunter Creek Bridge	15C010	Hunter Creek Rd	Hunter Creek	Improvements or abandonment	Scour Critical / Weight Restricted-Load Posted / Sufficiency Rating < 50
Lower Hunter Creek Bridge	15C24	Hunter Creek Rd	Hunters Creek	Maintenance / Repair	Scour Critical / Sufficiency Rating < 50
Upper Crook Creek Bridge	15C32	North Bank Pistol River Rd	Upper Crook Creek	Elevating / Lengthening	Scour Critical; CIP project may NOT address need
Pistol River Overpass	15C28	Pistol River Road	Private Road	Rotted members replacement or abandon	Not Applicable
Pistol River Bridge	15C33	Pistol River Loop Rd (Co. Rd 693)	Pistol River	Improvements or abandonment	Structurally Deficient / Sufficiency Rating < 50 / Scour Critical
Gregg's Creek Bridge	15C27	Ophir Rd	Greggs Creek	Railing replacement, additional approach guardrail, and safety upgrades; footing beams and erosion monitoring	Scour Critical (could apply)
Euchre Creek Bridge	15C31	Ophir Rd (Co. Road 510)	Euchre Creek	Replacement	Scour Critical / Weight Restricted-Load Posted / Sufficiency Rating < 50

FUTURE TRANSPORTATION SYSTEM OPERATIONS

The future transportation system operations analysis identifies how the study intersections shown in Figure lare expected to operate under year 2042 traffic conditions during the weekday evening peak period. The analysis also identifies non-motorized transportation movements at the study intersections. This evaluation helps to understand future needs of people driving, walking, and biking in the study area. The following sections summarize how forecast traffic volumes were developed at the study intersections and the resultant traffic operations and queuing analyses.

[^2]

gure 1
Bureau of Land Management
dy Area

- County Boundary

Study Area - State Border

Forecast Traffic Volumes

Forecast traffic volumes were developed for the study intersections based on existing traffic volumes and information provided in the Statewide Integrated Model (SWIM). The strength of the SWIM is that it provides an understanding of future demand along US 101 through Curry County, which applies to all the study intersections. Estimated growth along US 101 varies in the SWIM for different regions of the county, therefore localized growth rates were used for the study intersections based on their location in the county, as opposed to using one average growth rate. This approach will avoid overestimating traffic growth in some areas and underestimating it in others.

While the SWIM provides an understanding of growth along US 101 , it does not provide the same understanding of future demand on all the side streets at the study intersections. Therefore, the localized US 101 growth rates were applied to all movements at the study intersections for a conservative estimate, except for the west leg of the US 101 / Oceanview Drive-Winchuck River Road intersection where estimated growth for the side street is available. Table 5 summarizes the 20-year growth factors that were applied to the existing traffic volumes at the study intersections. As shown, the greatest future demand on the US 101 corridor is expected in the area between Brookings and Gold Beach.

Table 5. 20-Year Study Intersection Growth Factors

Map ID	Intersection	Growth Factor
$\mathbf{1}$	US 101 / Floras Creek Rd	1.05
$\mathbf{2}$	US 101 / Sixes River Rd	1.05
$\mathbf{3}$	US 101 / Cape Blanco Hwy	1.05
$\mathbf{4}$	US 101 / Ophir Rd	1.07
$\mathbf{5}$	US 101 / Edson Creek Rd-Nesika Rd	1.07
$\mathbf{6}$	US 101 / Pistol River Rd	1.13
$\mathbf{7}$	US 101 / Cape Ferrelo Rd	1.13
$\mathbf{8}$	US 101 / Winchuck River Rd-Oceanview Dr	1.03 / 1.25 (West Leg)

Traffic Operations Analysis

A future traffic operations analysis was performed to identify if the study intersections exceed their volume-to-capacity (V/C) ratio targets in the year 2042. The analysis evaluated the forecast weekday PM peak hour traffic volumes at the study intersections assuming their current lane configurations and traffic control devices, illustrated in Figure 2, as none of the planned projects in Curry County previously referenced are expected to impact future intersection operations. The weekday PM peak hour was selected for the analysis given that it generally represents the most critical time period throughout the day. However, other peak hours may be more critical in some locations, such as near schools. The analysis used PTV Vistro 2022 software and its Highway Capacity Manual (HCM) $7^{\text {th }}$ Edition reports to summarize the V/C ratios, Levels of Service (LOS), delay, and $95^{\text {th }}$ percentile queves at the study intersections.

US 101 /

US 101 /

US $101 /$

US 101 /

Figure
2

Table 6 reports the resultant traffic operations and V/C ratio targets (per the Methodology and Assumptions Memorandum) at the study intersections and it indicates whether the intersections meet their V/C ratio targets. The V/C ratios shown are reported for the critical movement (CM) at the intersections given that all intersections are stop-controlled. The future 2042 traffic volumes and resultant traffic operations are also illustrated in Figure 3.

According to the analysis, all study intersections are expected to meet their V / C ratio targets under year future 2042 (no-build) traffic conditions and the US 101 / Winchuck River Road-Ocean View Drive intersection continues to experience the highest side-street delay. The traffic operations worksheets are included in Attachment B.

Table 6. Traffic Operations Analysis Results - Future 2042 Weekday PM Peak Hour

Map ID	Intersection	CM ${ }^{1}$	V/C	LOS	Delay (sec)	V/C Ratio Target	Target Met?
1	US 101 / Floras Creek Rd	WB	0.01	B	10.1	0.75 N-S / 0.80 E	Yes
2	US 101 / Sixes River Rd	WB	0.03	B	11.2	0.70 N-S / 0.75 E	Yes
3	US 101 / Cape Blanco Hwy	EB	0.05	B	10.7	0.70 N-S / 0.75 W	Yes
4	US 101 / Ophir Rd	WB	0.01	A	9.3	0.70 N-S / 0.75 E	Yes
5	US 101 / Edson Creek Rd-Nesika Rd	EB	0.04	B	11.0	0.70 N-S / 0.75 E-W	Yes
6	US 101 / Pistol River Rd	WB	0.03	B	11.7	0.70 N-S / 0.75 E	Yes
7	US 101 / Cape Ferrelo Rd	WB	0.04	B	11.0	0.70 N-S / 0.75 E	Yes
8	US 101 / Winchuck River Rd-Oceanview Dr	EB	0.18	C	24.0	0.75 N-S / 0.80 E-W	Yes

$1 \mathrm{NB}=$ northbound; $\mathrm{SB}=$ southbound; $\mathrm{EB}=$ eastbound; $\mathrm{WB}=$ westbound

Queueing Analysis

Table 7 summarizes the $95^{\text {th }}$ percentile queues at the study intersections during the weekday PM peak hour under year 2042 future (no-build) traffic conditions, as compared to the vehicle storage that is available. The vehicle queue lengths were rounded to the nearest 25 feet and the storage lengths reflect striped storage for each turn-lane pocket at the intersections or available storage to the upstream driveway or intersection. According to the analysis, all available vehicle storage at the study intersections is adequate to serve the expected future traffic volume queues. The queuing results are included in the traffic operations worksheets provided in Attachment B.

US $101 /$

US 101 /

US $101 /$
US 101 /

US 101 /

US 101 /

US $101 /$

Table 7. Queuing Analysis Results - Future 2042 Weekday PM Peak Hour

Map ID	Intersection	Movement ${ }^{1}$	Storage Length (feet) ${ }^{2}$	95ih Percentile Queue (feet) ${ }^{3}$	Adequate?
1	US 101 / Floras Creek Rd	SBLT	490	<25	Yes
		WBLR	125	25	Yes
2	US 101 / Sixes River Rd	NBL	95	<25	Yes
		SBL	100	<25	Yes
		EBLTR	60	<25	Yes
		WBLTR	600	25	Yes
3	US 101 / Cape Blanco Hwy	NBL	180	25	Yes
		EBLR	60	25	Yes
4	US 101 / Ophir Rd	SBL	750	<25	Yes
		WBLR	420	<25	Yes
5	US 101 / Edson Creek Rd-Nesika Rd	NBLTR	980	<25	Yes
		SBLTR	3,400	<25	Yes
		EBLTR	980	25	Yes
		WBLTR	260	25	Yes
6	US 101 / Pistol River Rd	SBL	155	<25	Yes
		WBLR	940	25	Yes
7	US 101 / Cape Ferrelo Rd	SBLT	760	<25	Yes
		WBLR	570	25	Yes
8	US 101 / Winchuck River Rd-Oceanview Dr	NBL	185	25	Yes
		SBL	205	25	Yes
		EBLTR	70	25	Yes
		WBLTR	300	25	Yes

'NB = northbound; SB = southbound; EB = eastbound; WB = westbound; L = left; T = through; R = right
${ }^{2}$ Storage lengths reflect striped storage for each turn-lane pocket at the intersections or available storage to the upstream driveway or intersection.
${ }^{3}$ Vehicle queues were rounded to the nearest 25 feet.

Non-Motorized Transportation Analysis

Curry County can expect to see similar pedestrian and bicycle volumes at the study intersections between existing and future 2042 traffic conditions, as summarized in Table 8.

Table 8. Non-Motorized Intersection Movements

Map ID	Intersection	Non-Motorized Volume	Intersection Leg / Movement
$\mathbf{2}$	US 101 / Sixes River Rd	1 Pedestrian	West Leg
$\mathbf{3}$	US 101 / Cape Blanco Hwy	1 Pedestrian	West Leg
$\mathbf{6}$	US 101 / Pistol River Rd	1 Bicyclist	Northbound Through
$\mathbf{7}$	US 101 / Cape Ferrelo Rd	4 Bicyclists	Southbound Through
$\mathbf{8}$	US 101 / Winchuck River Rd-Oceanview Dr	1 Pedestrian	Northbound

As indicated in Technical Memorandum \#3 (Update System Inventory) and Technical Memorandum \#4 (Current Transportation System Operations), there are several gaps and deficiencies in the existing pedestrian and bicycle networks that limit pedestrian and bicycle movements and create stressful environments along roadways and at intersections, including several of the intersections shown above.

FUTURE SAFETY CONDITIONS

The existing transportation conditions presented in Technical Memorandum \#4 (Current Transportation System Operations) revealed the following safety conditions within the project study area based on the most recent five years of available crash data (January 1, 2017 through December 31, 2021):

- 928 crashes were reported in Curry County between 2017 and 2021.
- 59% of all reported crashes resulted in some level of injury, including 14 fatal crashes and 45 serious injury crashes (4 of the fatal crashes included pedestrians and 1 included a bicyclist).
- 39% of all reported crashes were with a fixed or other object, 19% were turning movement, and 15% were rear-end.
- 22 of the reported crashes included pedestrians and 8 included bicyclists.
- No crashes were reported at the US 101 / Cape Blanco Highway, US 101 / Pistol River Road, or US 101 / Cape Ferrelo Road intersections during the study period.
- No study intersection has an observed crash rate that exceeds the applicable 90th percentile crash rate or critical crash rate (the US 101 / Floras Creek Road intersection crash rate -0.23 - is approaching its critical crash rate threshold -0.28).
- No study intersection exhibits an excess proportion of any one crash type.
- 44 of the 125 study segments have observed crash rates that exceed the rural highway crash rates (many exhibited less than one crash per year).
- 6 segments, all along US 101 , had more than ten total crashes, 4 of which are in Brookings (most the crashes were rear-end or turning movement and included 3 of the fatal crashes).
- There are no SPIS sites in the top 10% within Curry County from the most recent SPIS list.

The safety conditions summarized above are expected to worsen over time if vehicular, pedestrian, and bicycle volumes increase and if no changes are made to the transportation system. Although the County's CIP includes several important roadway improvements, none of them are expected to improve these safety conditions. They will be evaluated in the upcoming alternatives analysis for potential safety solutions.

FUTURE MULTIMODAL CONDITIONS

A review of future multimodal conditions across the county is presented in the following sections, including the current and expected inventory of multimodal facilities and services, future bicycle level of traffic stress, and the pedestrian and transit qualitative multimodal assessments. The current multimodal conditions identified in Technical Memorandum \#4 (Current Transportation System Operations) are generally expected to deteriorate with time if vehicular, pedestrian, and bicycle volumes increase and if no changes are made to the transportation system.

Multimodal Inventory

A comprehensive inventory of the existing transit, bicycle, and pedestrian network was undertaken in Technical Memorandum \#3 (Update System Inventory). The transit inventory detailed that:

- Public transit is operated by Curry Public Transit (CPT) and the SouthWest POINT. CPT runs fixed-route service between Coos Bay/North Bend and Smith River and dial-a-ride service in Brookings and Gold Beach. SouthWest POINT operates intercity bus service between Klamath Falls and Brookings.
- CPT has 5 official bus stops in Port Orford, Gold Beach, Brookings, and Harbor and 2 flag stops in Langlois. Bus stop amenities range from no amenities to covered shelters, etc.
CPT does not have park and ride facilities or transit centers in its service area.
- 24% of Curry County's overall population lives with a disability and many are concentrated around the incorporated cities and unincorporated rural communities.

The recently adopted CPT Transit Development Plan (TDP) has identified several transit opportunities that may affect future transit operations. These opportunities will be considered in the upcoming alternatives analysis.
The bicycle and pedestrian inventory found that:

- County collectors and arterials lack walking and biking facilities in both the rural areas and within the UGBs, except for some sidewalks and bike lanes on select streets in Brookings and Gold Beach.
- The only walking and biking facilities available on the State highway system are four foot (or wider) paved shoulders along US 101 (this highway is a coastal bike route). Sidewalks and bike lanes are generally provided on US 101 within the UGBs.
- The Oregon Coast Bike Route (OCBR) is a popular bike route running the length of the Oregon coast (US 101) for approximately 370 miles. The Wild Rivers Coast Scenic Bikeway is an Oregon Scenic Bikeway in the Port Orford area.
- Many of the county's primary activity centers that could generate biking and walking trips are located within the urban and unincorporated areas and appear to be accessible by bicycle or walking.

The existing bicycle and pedestrian network is expected to remain the same through 2042, with the exception of a few bike lane and sidewalk projects outlined in ODOT's STIP and the County's CIP. These projects will be considered in the upcoming alternatives analysis.

Bicycle Level of Traffic Stress

The existing Bicycle Level of Traffic Stress (BLTS) analysis presented in Technical Memorandum \#4 (Current Transportation System Operations) revealed that most arterials and collectors in Curry County score with a BLTS 2 or 3 and few of these roadways or sections of roadway score with a BLTS 1 or BLTS 4. The BLTS scores of roadways generally lowers further from the urbanized areas of the county where daily traffic volumes decrease and the roadway environment becomes increasingly rural. Even without dedicated biking facilities, rural roadways can receive a score of BLTS 2 if bicyclists are sharing the roadway with fewer vehicles, depending on the posted or prevailing speed. The lack of dedicated bicycle facilities may still be uncomfortable for some riders, despite a BLTS score of 2 .

Conversely, most roadways with higher BLTS scores are generally centered around the urbanized areas of the county and are attributed to higher traffic volumes and higher posted speeds, especially without dedicated biking facilities.

The BLTS for arterials and collectors in the county is expected to remain the same over time with the estimated growth in vehicular volumes, described in previous sections, except for these facilities:

- S Bank Chetco River Road from Harbor View Creek to the eastern UGB: the BLTS score for this segment is expected to increase from 3 under current traffic conditions to 4 under future traffic conditions, if no changes are made to the facility.
- N Bank Chetco River Road from Yellowbrick Road to the eastern UGB: the BLTS score for this segment is expected to increase from 3 under current traffic conditions to 4 under future traffic conditions, if no changes are made to the facility.
- Sixes River Road from US 101 to MP 2.0: the BLTS score for this segment is expected to increase from 2 under current traffic conditions to 3 under future traffic conditions, if no changes are made to the facility.

The changes in BLTS scores are illustrated in Figure 4 and the analysis worksheet is provided in Attachment C . These bicycle conditions will be evaluated in the upcoming alternatives analysis for possible bicycle facility solutions.

Pedestrian Qualitative Multimodal Assessment

The existing pedestrian qualitative multimodal assessment presented in Technical Memorandum \#4 (Current Transportation System Operations revealed that:

- Most arterials and collectors result in "Poor" Pedestrian QMA ratings - except within and near the incorporated cities and unincorporated communities. This "Poor" rating is generally due to a lack of walking facilities and lighting and the presence of higher posted speeds.
- US 101 is primarily rated as "Fair" near the incorporated cities and unincorporated communities and demonstrates some "Good" ratings in Port Orford and Brookings.
- Some sections of US 101 and the remaining State highways are rated as "Poor."

The pedestrian conditions summarized above are expected to remain the same if no changes are made to the transportation system. These conditions will be evaluated in the upcoming alternatives analysis for possible pedestrian facility solutions.

Bicycle and Pedestrian Safety Risk

The existing safety risk assessment presented in Technical Memorandum \#4 (Current Transportation System Operations) revealed that:

- Safety risks to bicyclists are relatively high along the US 101 corridor throughout the county but is highest within the Brookings UGB. This is due to factors such as access density, proximity to transit and schools, demographics, and zoning of adjacent lands.
- The greatest safety risks to pedestrians are the highest on US 101 near Airport Road, within the city limits of Port Orford and Gold Beach (northern) and the Brookings UGB, and near the Cape Sebastian area north of Pistol River.

These bicycle and pedestrian safety risk conditions will be evaluated in the upcoming alternatives analysis for possible solutions.

[^3]

Future Bicycle Level of Traffic Stress

Future Bicycle Level of Traffic Stress

Future Bicycle Level of Traffic Stress

Transit Qualitative Multimodal Assessment

The existing transit qualitative multimodal assessment presented in Technical Memorandum \#4 (Current Transportation System Operations) revealed that transit services and facilities in the county results in a Transit QMA rating of "Fair" primarily due to its frequency. Although service is rated as "Fair," it is important to note that available services and facilities are currently rural and provide countywide coverage, and more. The transit conditions are expected to remain the same if no changes are made to the transit or transportation systems. These transit quality conditions will be evaluated in the upcoming alternatives analysis, including the recommendations identified in the recently adopted CPT TDP, for possible solutions.

FUTURE FREIGHT OPERATIONS

The existing transportation conditions presented in Technical Memorandum \#4 (Current Transportation System Operations) revealed the following freight conditions:

- US 101, OR 250, and OR 255 are restricted to moving freight up to specific lengths and widths (more details are available on MCTD route maps) and are not authorized to move triples combinations.
- US 101 includes weight restricted bridges across Reinhart Creek (MP 311.40) south of Port Orford and Connector Road (MP 326.47) in Gold Beach.
- OR 250 and OR 255 are not authorized for continuous movement of 14 feet wide mobile homes / modular building units.
- Alternative freight routes to the primary arterials accessing Curry County - US 101, US 199, OR 42 - are limited and may not be appropriate for moving freight in their current state.
- One low-priority freight pinch point is located on US 101 that is approximately 1.8 miles long near Humbug Mountain State Park. Removing the pinch point would involve significant environmental constraints and major earthwork and construction.
- No high-priority bottlenecks, seismic landslide sites, specific freight impacts, or freight highway delay areas are identified on the State highway system in the county.
- 29 bridges are identified as either being structurally deficient (6), weight restricted (7), or having sufficiency ratings below 50 (25); one bridge can be all three of these.
- 10 of these bridges are under County jurisdiction and the remaining are owned by ODOT, the State Parks, or privately held. The County's CIP is addressing some of these bridges.
- No seismic bridges are identified on the State highway system in Curry County.
- Lower Harbor Road in Brookings and Dock Road to Harbor Drive in Port Orford are intermodal connectors with identified needs for moving freight.

These freight conditions will be considered in the upcoming alternatives analysis as possible roadway solutions are developed.

ATTACHMENT A - CURRY COUNTY 2021-2027 CIP PROJECTS

Table 9. 2021-2027 CIP Roadway Projects for Curry County

Project Name	Description	Type	Project Cost	Schedule
Gardner Ridge Road (MP 8.1)	A retaining wall system will be installed to repair the slide.	Slide Repair	\$800,670	2020-21
Langlois Mountain Road (MP 5.7)	Drainage improvements, including placement of deep sub drainage systems, a paved roadway ditch on the north side of the road along with ditch inlets, and a catch basin to convey surface water away from the road.	Slide Repair/ Drainage	\$324,550	2020-21
Langlois Mountain Road (MP 0 to 9.53)	Road maintenance including isolated reconstruction areas to repair sections of pavement, followed by chip sealing the roadway.	Spot Repair/Chip Seal	$\begin{gathered} \$ 120,870 / \\ \$ 202,000 \end{gathered}$	2023-24
Nicholson Drive (MP 0 to 0.18)	Construct 2-inch asphalt overlay and reconstruct areas as necessary to fix potholes. Install ditching and culvert improvements.	Drainage/ Spot Repair/ Overlay	\$110,250	2020-21
Chapman Lane (MP 0 †o 0.17)	Construct 2-inch asphalt overlay and reconstruct areas as necessary. Install posted speed signs.	Spot Repair/ Overlay	\$154,590	2021-22
Cedar Valley and McKinnon Drive	Remove existing 60-inch diameter Corrugated Metal Pipe culvert and replace it with a 19 foot 6 inch wide by 9 -foot-high bottomless arch culvert to meet fish passage design standards. Construct a pre-treatment bioswale. Reconstruct existing removed roadway with new 22-foot wide roadway with type " c " curbs, 4 -inches of asphalt concrete pavement on 12 -inches of aggregate base.	Drainage/ Overlay	\$471,080	2020-21
Old County Road (MP 0.88 to 2.92)	Chip seal road and repair isolated areas. Examine subbase to determine if it needs replacing.	Spot Repair/ Chip Seal	$\begin{gathered} \$ 84,890 / \\ \$ 55,000 \end{gathered}$	2021-22
Wollam Road (MP 0 to 0.11)	Chip seal to preserve the existing asphalt and extend the life of the road. The alligator cracking area at MP 0.05 needs to be investigated prior to chip sealing for subbase failure.	Subbase Inv./ Chip Seal	$\begin{gathered} \$ 17,220 / \\ \$ 4,000 \end{gathered}$	2021-22
Hensley Hill Road (MP 0.24 to 1.12)	Curbing with a curb inlet and culvert across the road is recommended for preservation at the beginning of the County section of roadway. Some reconstruction areas will be needed to fix sinking pavement in this section of the road. Low lying areas on the uphill side of the single lane road could use sub-drainage systems to convey water across the road. Some cracking areas will require reconstruction. A 2-inch overlay is recommended after repairs have been made to the entire roadway.	Spot Repair/ Curb/Overlay	\$527,540	2023-24

Project Name	Description	Type	Project Cost	Schedule
$\begin{gathered} \text { Bayview Drive (MP } \\ 0 \text { to } 0.11 \text {) } \end{gathered}$	Recommended improvements include removing curbs and adding curbs and gutters with a 2inch taper grind and 2-inch asphalt inlay. Provide reconstruction of the asphalt, 18-inches outside of the new gutter to install the curb and gutter. Driveways will need to be paved or reconstructed with new curb and gutter construction. A curb inlet should be installed at the northeast and northwest intersections of Bayview Drive and Hillside Terrace with a culvert installed to convey flows to the north and into the Hillside Terrace drainage system.	Spot Repair/Curb/ Overlay	\$287,610	Not Scheduled
Hillside Terrace (MP 0.1 to 0.27)	Full road reconstruction with curb and gutters on each side of the road, storm drainage infrastructure and road widening at the north end of the street. Existing ditching on the east side of the road would be replaced with piping. The north end of the road will be widened and designed to provide proper site distance from oncoming traffic on the top of the hill.	Full Reconstruction	\$574,260	2022-23
$\begin{aligned} & \text { Crestline Loop (MP } \\ & 0 \text { to } 0.25 \text {) } \end{aligned}$	Construct 2-inch asphalt overlay with leveling and some reconstruction areas prior to paving. Reconstruction areas will be required. Asphalt driveway aprons are recommended to keep gravel off the roadway.	Spot Repair/ Overlay	\$157,580	2021-22
Titus Lane (MP 0 to 0.13)	Construct 2-inch overlay; perform manhole frame adjustments.	Overlay	\$86,660	2021-22
Knapp Rd (MP 0 to $0.35)$	Construct 2-inch overlay. The center of the road will have an increased depth of asphalt to reestablish the crown of the road where the road appears to be flat. Work includes drainage ditching and adding culverts in areas that do not currently have drainage infrastructure.	Drainage/ Overlay	\$251,280	2023-24
Pacific Crest Drive (MP 0 to 0.27)	Widen approach of Pacific Crest Drive. Near the driveway at 19056 Pacific Crest Drive the pavement is cracking and settling on the edge of the road that will require road reconstruction. It is recommended to provide a new chip seal after areas of the road have been repaired and the approach widened.	Widening/ Overlay/Chip Seal	$\begin{gathered} \$ 155,120 / \\ \$ 9,000 \end{gathered}$	2024-25
McKenzie Road (MP 0 †o 0.48)	The intersection of McKenzie Road should be reconstructed to meet Curry County standards. A soil nail wall system is needed to resolve this slide area. A temporary drainage and groundwater system is needed for improving the drainage in this area including a paved ditch, subsurface drain system and upgrading the ditch inlet. Multiple areas along the roadway will require reconstruction. After reconstruction areas are repaired it is recommended the McKenzie Road be chip sealed.	Slide/Spot Repair/Chip Seal	$\begin{gathered} \$ 236,130 / \\ \$ 15,000 \end{gathered}$	2023-24
Stonecypher Road (MP 0 †o 0.3)	Construct 2-inch overlay.	Overlay	\$110,470	2023-024

23 | Curry County Transportation System Plan | Kittelson \& Associates, Inc.

Project Name	Description	Type	Project Cost	Schedule
Old Coast Road (MP 0.74 MP 2.55)	Milepost 0.737 to Milepost 1.734 on Old Coast Road has some pothole areas to be repaired. Ditch maintenance is suggested where necessary. It is recommended that MP 1.734 to MP 2.554 on Old Coast Road be chip sealed to preserve the existing asphalt. Isolated repair areas are recommended prior to chip sealing.	Spot Repair/ Chip Seal	$\begin{aligned} & \$ 208,900 / \\ & \$ 100,000 \end{aligned}$	2024-25
Old Coast Road (MP 4.35 to 4.59)	The roadway section needs to be chip sealed to preserve the existing pavement. The beginning and end of this section of Old Coast Road needs to be reconstructed prior to the chip seal. Tree roots will be cut out of the road and the asphalt and base repaired after removing the roots. A ditch installed on the east side of the road will ensure the water is redirected from the road.	Spot Repair/ Chip Seal	$\begin{aligned} & \$ 54,650 / \\ & \$ 15,000 \end{aligned}$	2024-25
Floras Creek Road (MP 2.9)	Widen road to the south to a standard 20 -foot wide road. Install a 100 -foot section of gabion style retaining wall along the road and across the 72 -inch diameter culvert for slope stability. The existing ditch will need to be filled in and replaced with 12 -inch diameter culverts. The 72 -inch diameter culvert and structure are recommended to be replaced. A culvert outlet structure will need to be installed to replace the existing wooden structural pipe support. A geotechnical investigation and environmental permitting are included in the construction cost estimate.	Drainage/ Widening/ Slide Repair	\$650,130	Not Scheduled
Floras Creek Road (MP 2.7)	Install an 80 -foot gabion style retaining wall along the north side. The existing 18 -inch diameter culvert needs replacement. The inlet side of the road needs to be ditched parallel to the road on each side of the new culvert. A geotechnical investigation and environmental permitting are included in the construction cost estimate.	Bank Stabilization	\$231,680	Not Scheduled
Floras Creek Road (MP 3.96)	Install a 120-foot of gabion style retaining wall on the north inside side of the curve. The road should be widened to County standards. The existing roadway will be realigned 100 feet east of the curve. Fog line installation on each side of the road is suggested for safety. The existing culvert outlet on the north side of the road will need to be replaced and extended, ten feet. Rip rap installation on the outlet side will ensure slope stabilization. A geotechnical investigation and environmental permitting are included in the construction cost estimate.	Slide Repair/ Widening	\$421,450	Not Scheduled
Floras Creek Road (MP 3.31)	The road needs to be realigned to fix sharp curves and widen the road to County standards. Work will include the replacement of 200 feet of roadway to straighten the road, embankment, and extending the existing culvert 20 feet to the south.	Realignment/ Widening/ Drainage	\$179,420	Not Scheduled
Floras Creek Road (MP 2.61 to 5.18)	Recommended improvements include chip sealing the existing roadway to preserve the pavement. Some isolated areas of reconstruction are recommended to fix sinking and cracking areas, primarily along the edge of the road. These repairs will take place prior to chip sealing. Fog lines need to be added on each side of the roadway.	Spot Repair/ Chip Seal	$\begin{gathered} \$ 219,990 / \\ \$ 119,000 \end{gathered}$	2023-24

Project Name	Description	Type	Project Cost	Schedule
Pacific View Drive (MP 0 to 0.36)	Overlaying Pacific View Drive after the repair areas are addressed is recommended. Reconstruction includes grinding out the existing asphalt to subbase and paving back to grade before chip sealing. Attention should be given to the subbase to determine if any replacement will be necessary. Foundation stabilization should be used as required. Maintenance of ditches, culverts, and sweeping the roadway is to be provided by the County as necessary.	Grind/Chip Seal	\$153,060	2025-26
County Shop Road (MP 0 to 0.23)	Some reconstruction areas will be necessary to repair the roadway, specifically near the County Shop Road and Highway 101 intersection and near the culvert on the north side of the road. After repair areas have been completed the road will have a 2 -inch overlay with leveling to preserve the existing asphalt. A majority of culverts on this road are in fair/poor condition and need to be brought to good condition prior to overlaying the roadway. Permitting may be required for culvert replacements and is included in the cost for this project.	Drainage/ Spot Repair/ Overlay	\$209,230	Not Scheduled
Azalea Lane (MP 0 to 0.08)	It is recommended to widen the road to 16 feet and pave Azalea Lane with 2-inches of asphalt on 12 -inches of aggregate base to bring it up to County standards. Prior to paving an investigation to determine if existing rock can be used as a road base for cost savings should be performed.	Widening/ Paving	\$87,880	2020-21
$\begin{aligned} & \text { Demoss Road (MP } \\ & 0 \text { to } 0.16 \text {) } \end{aligned}$	Install 2-inch asphalt overlay. Work includes reconstruction areas to repair potholes and cracking as necessary before the overlay.	Spot Repair/ Overlay	\$116,280	2021-22
$\begin{gathered} \text { Gowman Lane (MP } \\ 0 \text { to } 0.19 \text {) } \end{gathered}$	A full roadway reconstruction for Gowman Lane with 2-inches of asphalt on 12-inches of aggregate base is suggested. The subbase will be investigated and replaced with foundation stabilization as necessary.	Full Reconstruction	\$320,680	2021-22
Grizzly Mountain Road (MP 0.39 to 1.34)	Recommendations include spot repairs for asphalt removal and paving back 4-inches where necessary. The spot repairs will be followed by a 2 -inch overlay. Install additional culverts and maintain ditching. Fog lines on each side of the road are suggested for safety during low visibility conditions.	Spot Repair/ Overlay/ Drainage	\$315,760	2024-25
Emerald Drive (MP 0 to 0.09)	It is recommended to realign and change the elevation of 300 linear feet of road starting at Hunter Creek Heights. Right-of-way may need to be procured to the east of Emerald Drive to realign the road. The remaining portion of the road will be reconstructed where necessary and a 2 -inch overlay for pavement preservation to increase the life of the road.	Realign/Spot Repair/ Overlay	$\begin{gathered} \$ 199,800 / \\ \$ 3,000 \end{gathered}$	2024-25
Fairgrounds Road (MP 0.09 to 0.28)	FAIRGR601A\&B need a 2-inch grind and inlay. Potholes and sinking areas will need to be repaired as necessary before the inlay. A proper drainage system is recommended with valley gutters, ditches, and culverts. FAIRGR601C will need full reconstruction per Curry County standards.	Spot Repair/ Inlay	\$286,320	2024-25

25 | Curry County Transportation System Plan|Kittelson \& Associates, Inc.

Project Name	Description	Type	Project Cost	Schedule
Lower Harbor Road (MP 0.17 to 0.96)	This project includes adding 3,500 lineal feet of 5 -foot-wide concrete sidewalks on Lower Harbor Road. Work for the sidewalk improvements will include some new curb installation/relocation, retaining walls, ADA ramps, driveway approaches, storm drainage improvements where necessary, and relocation of utilities as required.	Sidewalk Improvements	\$1,089,720	Not Scheduled
Agness-Illahe Road (MP 6.61 to 7.55)	It is recommended to finish chip sealing from MP 6.8 to MP 7.548 to preserve and extend the life of the existing pavement. The turnoff at Illahe Lodge and some isolated areas will need repaired prior to the chip seal.	Spot Repair/ Chip Seal	\$53,840	2022-23
Noble Drive (MP 0.67 to 0.83)	It is recommended for Curry County to transfer this road to the adjacent property owners for sole use of the roadway. If the County does not vacate the road, costs for full reconstruction of the roadway are provided.	Full Reconstruction	\$177,860	Not Scheduled
Driftwood Drive, Azalea Lane, and lris Street (MP 0 to 0.31)	Recommended improvements include removing curbs and replacing them with curb and gutters. A 2-inch grind, and 2-inch asphalt inlay. A reconstruction area, 18-inches from the existing curb line prior to the inlay is recommended to repair the large gap between existing curbs and asphalt. The storm drain system needs upgraded with new culverts, storm drain pipes and catch basins.	Drainage/ Reconstruction	\$1,415,170	Not Scheduled
Lower Harbor and Shopping Center Intersection (MP 0.68)	Installing a roundabout addresses flow issues from the boat launch parking and Shopping Center intersection and will increase safety. The proposed roundabout with sidewalks would encompass an 80 foot radius, which may require some additional right-of-way. This item is not included in the cost of the project.	Intersection Improvement	\$977,640	Not Scheduled
Lower Harbor and Commercial Intersection (MP 0.12)	Installing a roundabout at this intersection would address any flow issues and increase safety. The proposed roundabout and sidewalks footprint would include an 80 foot radius. Steep ground and an existing retaining wall prohibit construction of the roundabout to the east of Lower Harbor Road. Land acquisition needs procured to the west of Lower Harbor Road for right-of-way. It appears the Seal Cove Reality Building is located within the construction area and would need to be purchased and removed. These items are not included in the cost of this project.	Intersection Improvement	\$1,027,480	Not Scheduled
Lakeshore Drive Turnaround (MP 0.37)	Installing a " T " turnaround at the end of this road would address preexisting issues. Gabian retaining wall will be installed at the end of Lakeshore Drive. Signs can be posted to deter the public from parking and using the dead end road for lake access.	Turnaround Improvement	\$98,270	Not Scheduled

Table 10. 2021-2027 CIP Bridge Projects for Curry County

Project Name	Description	Project Cost	Schedule
Morril Bridge	Morrill Bridge is currently in the design phase of full removal and replacement.	\$2,500,000	2020-21
Edson Creek "A" Bridge	The proposed recommendation is to strengthen the existing bridge girders in accordance with the ODOT Bridge Design Manual as needed for flexure and shear.	\$366,000	2021-22
Myrtle Creek Bridge	The proposed recommendation is a full bridge replacement with a modern bridge type of sufficient width and clearance, including standard bridge rails and approach rail features. The replacement bridge is assumed to be a single span structure with a width of less than 20 feet so that is not considered a deficient two-lane bridge.	\$3,410,000	2025-26
Willow Creek Bridge	The County stated that the bridge has deteriorated since last bridge inspection and anticipates a much lower bridge rating. This bridge is considered priority for replacement.	TBD	TBD
Don Cameron Bridge	The Don Cameron Bridge is in fair to poor condition and meets minimum tolerable limits. If funds become available minor repairs would improve the Don Cameron Bridge significantly.	TBD	TBD
Lower Hunter Creek Bridge	Lower Hunter Creek Bridge is in fair to poor condition and a high priority for corrective action.	TBD	TBD
Upper Crook Creek Bridge	Although the bridge structure is in good condition, there is very low clearance between the bottom of the bridge and creek bed. This location has been experiencing buildup of silt and gravel from upstream salmon habitat projects. The buildup is causing capacity concerns, and excavating is not an option due to regulatory requirements. The bridge needs to be elevated and lengthened to accommodate flow levels.	TBD	TBD
Pistol River Overpass	Pistol River Overpass Bridge received a fair condition rating and would benefit from the replacement of damaged/rotten members. The County would like to abandon this bridge and provide current residents with an alternative route to cut costs for bridge maintenance and future repairs.	TBD	TBD
Gregg's Creek Bridge	Gregg's Creek Bridge received a high structural inspection rating and would highly benefit from railing replacement, additional approach guardrail, and an upgrade to current safety standards. There is a scheduled install of object markers at all four corners of the structure. Monitoring of the footing, cracks in beams, and erosion is needed.	TBD	TBD
Euchre Creek Bridge	Euchre Creek Bridge is in critical to serious condition with a sufficiency rating of 23.8 and is a high priority for replacement. Euchre Creek Bridge has been identified as a historical structure and may be eligible for alternate funding. There are alternate routes available if this bridge were to be closed due to safety concerns and the County could elect to abandon the bridge if repairs are too costly.	TBD	TBD
Pistol River Bridge	Pistol River Bridge was rated as structurally deficient. This is one of the longest bridges maintained by Curry County. The bridge is located on a looped roadway; because of the looped road, the bridge is not crucial for traffic conveyance. If funding cannot be acquired, an option would be to abandon the bridge.	TBD	TBD
Hunter Creek Bridge	Hunter Creek Bridge is in serious condition, basically intolerable, and a high priority for corrective action. This bridge is also located on a looped roadway and abandoning the structure may be an option if funding cannot be secured.	TBD	TBD

ATTACHMENT B - FUTURE TRAFFIC OPERATIONS WORKSHEETS

Intersection Level Of Service Report Intersection 1: US 101 / Floras Creek Road

Control Type:	Two-way stop	Delay $(\mathrm{sec} / \mathrm{veh}):$	12.3
Analysis Method:	HCM 7th Edition	Level Of Service:	B
Analysis Period:	15 minutes	Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.004

Intersection Setup

Name	US 101		US 101		Floras Creek Rd	
Approach	Northbound		Southbound		Westbound	
Lane Configuration	F		4		T	
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	0	0	0	0	0	0
Entry Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00
No. of Lanes in Exit Pocket	0	0	0	0	0	0
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00
Speed [mph]	55.00		40.00		55.00	
Grade [\%]	2.80		-1.90		1.10	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	US 101		US 101		Floras Creek Rd	
Base Volume Input [veh/h]	204	4	7	275	2	9
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	11.00	0.00	0.00	8.00	0.00	11.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	204	4	7	275	2	9
Peak Hour Factor	0.9500	0.9500	0.9500	0.9500	0.9200	0.9200
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	54	1	2	72	1	2
Total Analysis Volume [veh/h]	215	4	7	289	2	10
Pedestrian Volume [ped/h]		0		0		0

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			Yes
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			
Number of Storage Spaces in Median	0	0	No

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.01	0.00	0.00	0.01
d_M, Delay for Movement [s/veh]	0.00	0.00	7.65	0.00	12.28	9.61
Movement LOS	A	A	A	A	B	A
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.01	0.01	0.05	0.05
95th-Percentile Queue Length [ft/ln]	0.00	0.00	0.29	0.29	1.26	1.26
d_A, Approach Delay [s/veh]	0.00		0.18		10.05	
Approach LOS	A		A		B	
d_I, Intersection Delay [s/veh]	0.33					
Intersection LOS	B					

Intersection Level Of Service Report Intersection 2: US 101 / Sixes River Road

Control Type:	Two-way stop	Delay (sec /veh):	12.9
Analysis Method:	HCM 7th Edition	Level Of Service:	B
Analysis Period:	15 minutes	Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.017

Intersection Setup

Name	US 101			US 101			Private Driveway			Sixes River Rd		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	$7 F$			$7 F$			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	1	0	0	1	0	0	0	0	0	0	0	0
Entry Pocket Length [ft]	95.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
No. of Lanes in Exit Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Speed [mph]	55.00			55.00			10.00			55.00		
Grade [\%]	0.00			0.00			2.40			0.70		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

Name	US 101			US 101			Private Driveway			Sixes River Rd		
Base Volume Input [veh/h]	2	226	10	6	232	2	0	0	2	7	0	10
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	0.00	12.00	10.00	0.00	13.00	0.00	0.00	0.00	0.00	0.00	0.00	20.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0	0	0	0	0	0	0
Total Hourly Volume [veh/h]	2	226	10	6	232	2	0	0	2	7	0	10
Peak Hour Factor	0.9500	0.9500	0.9500	0.9500	0.9500	0.9500	0.9000	0.9000	0.9000	0.9000	0.9000	0.9000
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	1	59	3	2	61	1	0	0	1	2	0	3
Total Analysis Volume [veh/h]	2	238	11	6	244	2	0	0	2	8	0	11
Pedestrian Volume [ped/h]	0			0			1			0		

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop	
Flared Lane			Yes	
Storage Area [veh]	0	0	0	Yes
Two-Stage Gap Acceptance			0	
Number of Storage Spaces in Median	0	0	No	

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.01
d_M, Delay for Movement [s/veh]	7.71	0.00	0.00	7.72	0.00	0.00	13.28	13.29	9.60	12.91	13.04	10.00
Movement LOS	A	A	A	A	A	A	B	B	A	B	B	B
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.10	0.10	0.10
95th-Percentile Queue Length [ft/ln]	0.11	0.00	0.00	0.34	0.00	0.00	0.19	0.19	0.19	2.46	2.46	2.46
d_A, Approach Delay [s/veh]	0.06			0.18			9.60			11.22		
Approach LOS	A			A			A			B		
d_I, Intersection Delay [s/veh]	0.56											
Intersection LOS	B											

Intersection Level Of Service Report

Intersection 3: US 101 / Cape Blanco Highway (OR 250)

Control Type:	Two-way stop	Delay $(\mathrm{sec} / \mathrm{veh}):$	12.2
Analysis Method:	HCM 7th Edition	Level Of Service:	B
Analysis Period:	15 minutes	Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.029

Intersection Setup

Name	US 101		US 101		Cape Blanco Highway		
Approach	Northbound		Southbound		Eastbound		
Lane Configuration	71		$\\|$		T		
Turning Movement	Left	Thru	Thru	Right	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Entry Pocket	1	0	0	0	0	0	
Entry Pocket Length [ft]	180.00	100.00	100.00	100.00	100.00	100.00	
No. of Lanes in Exit Pocket	0	0	0	0	0	0	
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00	
Speed [mph]	55.00		55.00		55.00		
Grade [\%]	-1.30		2.50		1.50		
Crosswalk	Yes		Yes		Yes		

Volumes

Name	US 101		US 101		Cape Blanco Highway	
Base Volume Input [veh/h]	23	223	237	8	14	16
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	0.00	11.00	12.00	25.00	8.00	0.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	0	0	0	0	0	0
Total Hourly Volume [veh/h]	23	223	237	8	14	16
Peak Hour Factor	0.9500	0.9500	0.9500	0.9500	0.9300	0.9300
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	6	59	62	2	4	4
Total Analysis Volume [veh/h]	24	235	249	8	15	17
Pedestrian Volume [ped/h]		0		0		

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			No
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			
Number of Storage Spaces in Median	0	0	No

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.02	0.00	0.00	0.00	0.03	0.02
d_M, Delay for Movement [s/veh]	7.78	0.00	0.00	0.00	12.23	9.28
Movement LOS	A	A	A	A	B	A
95th-Percentile Queue Length [veh/ln]	0.06	0.00	0.00	0.00	0.15	0.15
95th-Percentile Queue Length [ft/ln]	1.39	0.00	0.00	0.00	3.77	3.77
d_A, Approach Delay [s/veh]	0.72		0.00		10.66	
Approach LOS	A		A		B	
d_I, Intersection Delay [s/veh]	0.96					
Intersection LOS	B					

Intersection Level Of Service Report Intersection 4: US 101 / Ophir Creek Road

Control Type:	Two-way stop	Delay $(\mathrm{sec} / \mathrm{veh}):$	10.7
Analysis Method:	HCM 7th Edition	Level Of Service:	B
Analysis Period:	15 minutes	Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.002

Intersection Setup

Name	US 101			US 101			Private Driveway			Ophir Creek Road		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Entry Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
No. of Lanes in Exit Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Speed [mph]	55.00			55.00			15.00			55.00		
Grade [\%]	0.72			-1.50			1.80			1.50		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | US 101 | | | US 101 | | | Private Driveway | | | Ophir Creek Road | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 0 | 110 | 1 | 4 | 171 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 0.00 | 17.00 | 0.00 | 0.00 | 16.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Growth Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 0 | 110 | 1 | 4 | 171 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
| Peak Hour Factor | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9000 | 0.9000 | 0.9000 | 0.9000 | 0.9000 | 0.9000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 0 | 29 | 0 | 1 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Total Analysis Volume [veh/h] | 0 | 116 | 1 | 4 | 180 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
| Pedestrian Volume [ped/h] | | 0 | | | 0 | | | 0 | | | 0 | |

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop	
Flared Lane			No	
Storage Area [veh]	0	0	0	Yes
Two-Stage Gap Acceptance			0	
Number of Storage Spaces in Median	0	0	No	

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
d_M, Delay for Movement [s/veh]	7.56	0.00	0.00	7.43	0.00	0.00	10.74	11.08	9.19	10.70	11.07	8.86
Movement LOS	A	A	A	A	A	A	B	B	A	B	B	A
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.01
95th-Percentile Queue Length [ft/ln]	0.00	0.00	0.00	0.17	0.17	0.17	0.00	0.00	0.00	0.36	0.36	0.36
d_A, Approach Delay [s/veh]		0.00			0.16			10.34			9.32	
Approach LOS		A			A			B			A	
d_I, Intersection Delay [s/veh]	0.22											
Intersection LOS	B											

Intersection Level Of Service Report

 Intersection 5: US 101 / Edson Creek Road-Nesika RoadControl Type:
Analysis Method:
Analysis Period:

Two-way stop
HCM 7th Edition
15 mindes

Delay (sec / veh):	12.5
Level Of Service:	B
Volume to Capacity $(\mathrm{v} / \mathrm{c})$:	0.016

Intersection Setup

Name	US 101			US 101			Nesika Road			Edson Creek Road		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	\uparrow			\uparrow			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Entry Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
No. of Lanes in Exit Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Speed [mph]	55.00			55.00			55.00			45.00		
Grade [\%]	0.40			0.30			2.30			-2.00		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | US 101 | | | US 101 | | | Nesika Road | | | Edson Creek Road | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 21 | 127 | 6 | 9 | 170 | 1 | 0 | 7 | 17 | 5 | 4 | 4 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 10.00 | 18.00 | 0.00 | 25.00 | 16.00 | 0.00 | 0.00 | 14.00 | 6.00 | 0.00 | 0.00 | 50.00 |
| Growth Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 21 | 127 | 6 | 9 | 170 | 1 | 0 | 7 | 17 | 5 | 4 | 4 |
| Peak Hour Factor | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9000 | 0.9000 | 0.9000 | 0.9000 | 0.9000 | 0.9000 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 6 | 33 | 2 | 2 | 45 | 0 | 0 | 2 | 5 | 1 | 1 | 1 |
| Total Analysis Volume [veh/h] | 22 | 134 | 6 | 9 | 179 | 1 | 0 | 8 | 19 | 6 | 4 | 4 |
| Pedestrian Volume [ped/h] | | 0 | | | 0 | | | 0 | | | 0 | |

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop	
Flared Lane			Yes	
Storage Area [veh]	0	0	0	Yes
Two-Stage Gap Acceptance			0	
Number of Storage Spaces in Median	0	0	No	

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.02	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.02	0.01	0.01	0.00
d_M, Delay for Movement [s/veh]	7.69	0.00	0.00	7.75	0.00	0.00	11.98	12.48	9.48	11.57	11.50	9.61
Movement LOS	A	A	A	A	A	A	B	B	A	B	B	A
95th-Percentile Queue Length [veh/ln]	0.04	0.04	0.04	0.02	0.02	0.02	0.12	0.12	0.12	0.07	0.07	0.07
95th-Percentile Queue Length [ft/ln]	0.94	0.94	0.94	0.38	0.38	0.38	3.01	3.01	3.01	1.75	1.75	1.75
d_A, Approach Delay [s/veh]	1.04			0.37			10.37			10.99		
Approach LOS	A			A			B			B		
d_I, Intersection Delay [s/veh]	1.72											
Intersection LOS	B											

Intersection Level Of Service Report Intersection 6: US 101 / Pistol River Road

Control Type:	Two-way stop	Delay $(\mathrm{sec} / \mathrm{veh}):$	12.9
Analysis Method:	HCM 7 th Edition	Level Of Service:	B
Analysis Period:	15 minutes	Volume to Capacity $(\mathrm{v} / \mathrm{c}):$	0.015

Intersection Setup

Name	US 101		US 101		Carpenterville Road	
Approach	Northbound		Southbound		Westbound	
Lane Configuration	F		71		T	
Turning Movement	Thru	Right	Left	Thru	Left	Right
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	0	0	1	0	0	0
Entry Pocket Length [ft]	100.00	100.00	155.00	100.00	100.00	100.00
No. of Lanes in Exit Pocket	0	0	0	0	0	0
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00
Speed [mph]	55.00		55.00		55.00	
Grade [\%]	-1.30		1.40		2.70	
Crosswalk	Yes		Yes		Yes	

Volumes

Name	US 101		US 101		Carpenterville Road	
Base Volume Input [veh/h]	213	6	3	244	6	5
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	7.00	0.00	0.00	19.00	20.00	50.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	1	0	0	4	0	0
Total Hourly Volume [veh/h]	214	6	3	248	6	5
Peak Hour Factor	0.9500	0.9500	0.9500	0.9500	0.9000	0.9000
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	56	2	1	65	2	1
Total Analysis Volume [veh/h]	225	6	3	261	7	6
Pedestrian Volume [ped/h]		0		0		0

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			Yes
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			
Number of Storage Spaces in Median	0	0	No

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.02	0.01
d_M, Delay for Movement [s/veh]	0.00	0.00	7.68	0.00	12.88	10.35
Movement LOS	A	A	A	A	B	B
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.01	0.00	0.07	0.07
95th-Percentile Queue Length [ft/ln]	0.00	0.00	0.17	0.00	1.82	1.82
d_A, Approach Delay [s/veh]	0.00		0.09		11.71	
Approach LOS	A		A		B	
d_I, Intersection Delay [s/veh]	0.35					
Intersection LOS	B					

Intersection Level Of Service Report Intersection 7: US 101 / Cape Ferrelo Road

Analysis Method:
Analysis Period:

Two-way stop
HCM 7 th Edition
15 minutes

Delay (sec / veh):
11.0

Level Of Service:
Volume to Capacity (v / c):
0.045

Intersection Setup

Name	US 101		US 101		Cape Ferrelo Road		
Approach	Northbound		Southbound		Westbound		
Lane Configuration	$\\|$		4		T		
Turning Movement	Thru	Right	Left	Thru	Left	Right	
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	
No. of Lanes in Entry Pocket	0	0	0	0	0	0	
Entry Pocket Length [ft]	100.00	100.00	100.00	100.00	100.00	100.00	
No. of Lanes in Exit Pocket	0	0	0	0	0	0	
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00	
Speed [mph]	55.00		55.00		35.00		
Grade [\%]	0.00		0.00		-7.10		
Crosswalk	Yes		Yes		Yes		

Volumes

Name	US 101		US 101		Cape Ferrelo Road	
Base Volume Input [veh/h]	260	44	3	299	25	1
Base Volume Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Heavy Vehicles Percentage [\%]	9.00	5.00	0.00	19.00	5.00	0.00
Growth Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
In-Process Volume [veh/h]	0	0	0	0	0	0
Site-Generated Trips [veh/h]	0	0	0	0	0	0
Diverted Trips [veh/h]	0	0	0	0	0	0
Pass-by Trips [veh/h]	0	0	0	0	0	0
Existing Site Adjustment Volume [veh/h]	0	0	0	0	0	0
Other Volume [veh/h]	1	0	0	0	0	0
Total Hourly Volume [veh/h]	261	44	3	299	25	1
Peak Hour Factor	0.9500	0.9500	0.9500	0.9500	0.9000	0.9000
Other Adjustment Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Total 15-Minute Volume [veh/h]	69	12	1	79	7	0
Total Analysis Volume [veh/h]	275	46	3	315	28	1
Pedestrian Volume [ped/h]		0		0		0

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop
Flared Lane			No
Storage Area [veh]	0	0	0
Two-Stage Gap Acceptance			
Number of Storage Spaces in Median	0	0	No

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.00	0.00	0.00	0.00	0.04	0.00
d_M, Delay for Movement [s/veh]	0.00	0.00	7.88	0.00	11.05	9.32
Movement LOS	A	A	A	A	B	A
95th-Percentile Queue Length [veh/ln]	0.00	0.00	0.01	0.00	0.14	0.14
95th-Percentile Queue Length [ft/ln]	0.00	0.00	0.13	0.06	3.61	3.61
d_A, Approach Delay [s/veh]	0.00		0.07		10.99	
Approach LOS	A		A		B	
d_I, Intersection Delay [s/veh]	0.51					
Intersection LOS	B					

Intersection Level Of Service Report

Intersection 8: US 101 / Winchuck River Road-Ocean View Drive
Control Type:
Analysis Method:
Analysis Period:
Two-way stop
HCM 7 th Edition
15 minutes

Delay (sec / veh):
35.4

Level Of Service:
Volume to Capacity (v/c):

E
0.128

Intersection Setup

Name	US 101			US 101			Ocean View Dr			Winchuck River Rd		
Approach	Northbound			Southbound			Eastbound			Westbound		
Lane Configuration	75			71			\uparrow			\uparrow		
Turning Movement	Left	Thru	Right									
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	1	0	0	1	0	0	0	0	0	0	0	0
Entry Pocket Length [ft]	185.00	100.00	100.00	205.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
No. of Lanes in Exit Pocket	0	0	0	0	0	0	0	0	0	0	0	0
Exit Pocket Length [ft]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Speed [mph]	55.00			55.00			40.00			40.00		
Grade [\%]	2.10			-2.10			2.40			-5.60		
Crosswalk	Yes			Yes			Yes			Yes		

Volumes

| Name | US 101 | | | US 101 | | | Ocean View Dr | | | Winchuck River Rd | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Volume Input [veh/h] | 24 | 448 | 10 | 38 | 482 | 19 | 16 | 1 | 20 | 6 | 2 | 37 |
| Base Volume Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Heavy Vehicles Percentage [\%] | 4.00 | 3.00 | 10.00 | 6.00 | 7.00 | 0.00 | 0.00 | 0.00 | 0.00 | 20.00 | 0.00 | 8.00 |
| Growth Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| In-Process Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Site-Generated Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Diverted Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pass-by Trips [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Existing Site Adjustment Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other Volume [veh/h] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Hourly Volume [veh/h] | 24 | 448 | 10 | 38 | 482 | 19 | 16 | 1 | 20 | 6 | 2 | 37 |
| Peak Hour Factor | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9200 |
| Other Adjustment Factor | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| Total 15-Minute Volume [veh/h] | 6 | 118 | 3 | 10 | 127 | 5 | 4 | 0 | 5 | 2 | 1 | 10 |
| Total Analysis Volume [veh/h] | 25 | 472 | 11 | 40 | 507 | 20 | 17 | 1 | 22 | 7 | 2 | 40 |
| Pedestrian Volume [ped/h] | | 0 | | | 1 | | | 0 | | | 1 | |

Version 2022 (SP 0-2)
Intersection Settings

Priority Scheme	Free	Free	Stop	
Flared Lane			Yes	
Storage Area [veh]	0	0	0	Yes
Two-Stage Gap Acceptance			0	
Number of Storage Spaces in Median	0	0	No	

Movement, Approach, \& Intersection Results

V/C, Movement V/C Ratio	0.02	0.00	0.00	0.04	0.01	0.00	0.13	0.01	0.04	0.03	0.01	0.06
d_M, Delay for Movement [s/veh]	8.58	0.00	0.00	8.54	0.00	0.00	35.36	30.04	14.91	23.03	19.13	11.74
Movement LOS	A	A	A	A	A	A	E	D	B	C	C	B
95th-Percentile Queue Length [veh/ln]	0.07	0.00	0.00	0.12	0.00	0.00	0.62	0.62	0.62	0.35	0.35	0.35
95th-Percentile Queue Length [ft/ln]	1.86	0.00	0.00	2.95	0.00	0.00	15.44	15.44	15.44	8.78	8.78	8.78
d_A, Approach Delay [s/veh]	0.42			0.60			23.98			13.66		
Approach LOS	A			A			C			B		
d_I, Intersection Delay [s/veh]	1.88											
Intersection LOS	E											

ATTACHMENT C - FUTURE BLTS WORKSHEET

Segment \#	Street	From	To	Context	Bike Lanes	Parking	Outside Lane Width	Speed	Exhibit	Existing ADT	$\begin{aligned} & \text { Growth } \\ & \text { Factor } \end{aligned}$	$\begin{aligned} & 2042 \\ & \text { ADT } \end{aligned}$	$\begin{gathered} \hline 2042 \text { ADT } \\ \text { Bucket } \end{gathered}$	Paved Shoulder Width	Number of Lanes	$\begin{gathered} \text { Functional } \\ \text { Class } \end{gathered}$	LTS	$\begin{gathered} 2042 \\ \text { LTS } \end{gathered}$
1	Winchuck River Rd	US 101	Mp 5.0	Rural			12^{\prime}	40	14-6	1114	1.03	1147	750-1500	<4'	1 thru/direction	Collector	3	3
2	Winchuck River Rd	Mp 5.0	Eastern Terminus	Rural			12^{\prime}	40	14-6	675	1.03	695	400-750	<4'	1 thru/direction	Collector	3	3
3	Oceanview Dr	US 101	Seagull Ln	Rural	Yes	N	11^{\prime}	40	14-6	960	1.25	1200	750-1500	$4^{\prime}-6{ }^{\prime}$	1 thru/direction	Collector	3	3
4	Oceanview Dr	Seagull Ln	Max Ln	Rural	Yes	N	11^{\prime}	40	14-6	851	1.25	1064	750-1500	$4^{\prime}-6{ }^{\prime}$	1 thru/direction	Collector	3	3
5	Oceanview Dr	Max Ln	Cedar Ln	Rural	Yes	N	11^{\prime}	40	14-6	851	1.25	1064	750-1500	$4^{\prime}-6{ }^{\prime}$	1 thru/direction	Collector	3	3
6	Oceanview Dr	Cedar Ln	Olsen Ln	Urban	No		11^{\prime}	35	14-6	1414	1.25	1768	1500-7000	<4'	1 thru/direction	Collector	3	3
7	Oceanview Dr	Olsen Ln	Benham Ln	Urban	No		11	35	14-6	1453	1.25	1816	1500-7000	<4'	1 thru/direction	Collector	3	3
8	Benham Ln	Oceanview Dr	Mary's Ln	Urban	Yes	N	12^{\prime}	30	14-4	2609	1.25	3259	1500-7000	$4^{\prime}-6^{\prime}$	1 thru/direction	Collector	2	2
9	Benham Ln	Mary's Ln	US 101	Urban	Yes	N	12^{\prime}	30	14-4	4402	1.25	5498	3000-7000	$4^{\prime}-6{ }^{\prime}$	1 thru/direction	Collector		2
10	S Bank Chetco River Rd	us 101	Harbor View Creek	Urban	Yes	N	12^{\prime}	35	14-4	3429	1.06	3623	1500-7000	$4^{\prime}-6{ }^{\prime}$	1 thru/direction	Collector	3	3
11	S Bank Chetco River Rd	Harbor View Creek	UGB (MP 4.0)	Urban	No		12^{\prime}	40	14-6	1439	1.06	1520	1500-7000	>6'	1 thru/direction	Collector	3	4
12	S Bank Chetco River Rd	UGB (MP 4.0)	Eastern Terminus	Urban	No		12^{\prime}	40	14-6	109	1.06	115	<400	<4'	1 thru/direction	Collector	3	3
13	Lower Harbor Rd	Benham Ln	US 101	Urban	Yes	N	12^{\prime}	30	14-4	5545	1.23	6815	3000-7000	$4^{\prime}-6{ }^{\prime}$	1 thru/direction	Collector	2	2
14	Shopping Center Ave	W Hoffeldt Ln	Lower Harbor Rd	Urban	Yes	N	12^{\prime}	35	14-4	2528	1.00	2528	3000-7000	$4^{\prime}-6{ }^{\prime}$	1 thru/direction	Collector	3	3
15	N Bank Chetco River Rd	MP 1	Yellowbrick Rd	Urban	No		11^{\prime}	40	14-6	2567	1.07	2734	1500-3000	<4'	1 thru/direction	Collector	4	4
16	N Bank Chetco River Rd	Yellowbrick Rd	UGB (MP 5)	Urban	No		11^{\prime}	40	14-6	1492	1.07	1589	1500-3000	<4'	1 thru/direction	Collector	3	4
17	N Bank Chetco River Rd	UGB (MP 5)	Gardner Ridge Rd	Rural			11^{\prime}	40	14-6	1034	1.07	1101	400-1500	<4'	1 thru/direction	Collector	3	3
18	N Bank Chetco River Rd	Gardner Ridge Rd	MP 17.5	Rural			11^{\prime}	35	14-6	383	1.07	408	400-1500	<4'	1 thru/direction	Collector	3	3
19	Gardner Ridge Rd	N Bank Chetco River Rd	MP 17.0	Rural			11^{\prime}	45	14-16	340	1.06	359	<400	<4'	No lanes	Collector	2	2
20	Cape Ferrelo Rd	US 101	Brookside Dr	Rural			12^{\prime}	35	14-6	1042	1.13	1177	750-1500	<4'	1 thru/direction	Collector	3	3
21	Cape Ferrelo Rd	Brookside Dr	HWY 255	Rural			12^{\prime}	35	14-6	548	1.13	619	400-1500	<4'	1 thru/direction	Collector	3	3
22	Pistol River Loop	HWY 255	Hwy 255 (Cape View Loop)	Rural			12^{\prime}	55	14-16	182	1.13	206	<400	<4'	1 thru/direction	Collector	2	2
23	N Bank Pistol River Rd	Pistol River Loop	MP 8 (Forest Boundary)	Rural			11^{\prime}	55	14-16	148	1.13	167	<400	<4'	1 thru/direction and no lanes	Collector	2	2
24	Hunter Creek Rd	HWY 009	UGB (MP 2.3)	Urban	No		12^{\prime}	55	14-6	1660	1.06	1760	1500-7000	<4'	1 thru/direction	Collector	4	4
25	Hunter Creek Rd	UGB (MP 2.3)	Eastern Terminus	Rural			12^{\prime}	55	14-16	380	1.06	403	<400	<4'	1 thru/direction	Collector	2	2
26	NF-3680 (cont. from Hunter	(Hunter Creek Rd	Agness Rd	Rural				55	14-16	<400	1.06	<400	<400		no lanes	Collector	2	2
27	Jerrys Flat Rd	US 101	MP 79	Urban	No		12^{\prime}	30	14.5	2462	1.06	2610	1500-7000	$4^{\prime}-6^{\prime}$		Arterial	3	3
28	Jerrys Flat Rd	MP 79	Saunders Creek Rd	Urban	No			>45	14-6	1461	1.06	1549	750-1500				4	4
29	Jerrys Flat Rd	Saunders Creek Rd	MP 76.5	Urban	Yes	N	12^{\prime}	35	14-4	745	1.06	790	750-1500	<4'		Arterial	3	3
30	Jerrys Flat Rd	MP 76.5	UGB (MP 75.5)	Urban	No		12^{\prime}	45	14-6	427	1.06	453	400-750	<4'	1 thru/direction	Arterial	3	3
31	Jerrys Flat Rd	UGB (MP 75.5)	Eastern Terminus	Rural				>45	14-16	378	1.06	401	<400				2	2
32	Agness Rd	Lobster Creek Rd	Galice Creek Rd	Rural				45	14-16	228	1.06	241	<400	<4'	1 thru/direction	Arterial	2	2
33	Agness Rd	Galice Creek Rd	County Boundary (Coos)	Rural				45	14-16	83	1.06	88	<400	<4'	1 trand	Collector	2	2
34	Oak Flat Rd	Agness Rd	campground road (MP 3)	Rural				45	14-16	77	1.06	81	<400		nolanes	Collector	2	2
35	Galice Creek Rd	Agness Rd	County Boundary (Josephine)	Rural				45	14-16	<400	1.06	<400	<400		No lanes	Collector	2	
36	N Bank Rogue River Rd	US 101	MP 0.5	Urban	No		12^{\prime}	30	14-5	1836	1.04	1902	1500-7000	<4'		Collector	3	3
37	N Bank Rogue River Rd	MP 0.5	MP 0.8	Urban	No			45	14-6	1480	1.04	1533	1500-7000				4	4
38	N Bank Rogue River Rd	MP 0.8	Edson Creek Rd	Rural				45	14-16	1318	1.04	1365	400-1500	<4'			3	3
39	N Bank Rogue River Rd	Edson Creek Rd	Cedar Valley Rd	Rural			12^{\prime}	40	14-6	1281	1.04	1327	400-1500	<4'	1 thru/direction	Collector	3	3
40	N Bank Rogue River Rd	Cedar Valley Rd	Lobster Creek Rd	Rural				40	14-6	467	1.04	484	400-750	<4'			3	3
41	Cedar Valley Rd	N Bank Rogue River Rd	Ophir Rd	Rural			12^{\prime}	55	14-16	481	1.06	508	400-1500	<4'	1 thru/direction	Collector	3	3
42	Edson Creek Rd	N Bank Rogue River Rd	US 101	Rural			12^{\prime}	45	14-16	485	1.07	519	400-1500	<4'	1 thru/direction	Collector	3	3
43	Lobster Creek Rd	N Bank Rogue River Rd	Agness Rd	Rural				45	14-16	170	1.06	180	<400		No lanes	Collector	2	2
44	Nesika Beach Rd	US 101	Gun Club Rd	Rural			11^{\prime}	55	14-16	598	1.07	640	400-1500	<4'	1 thru/direction	Collector	3	3
45	Nesika Beach Rd	Gun Club Rd	US 101	Rural				40	14-6	330	1.07	353	<400				3	3
46	Ophir Rd	US 101	Euchre Creek Rd	Rural			11^{\prime}	45	14-16	336	1.07	360	<400	<4'	1 thru/direction	Collector	2	2
47	Euchre Creek Rd	Ophir Rd	MP 3 (Forest Road)	Rural			12^{\prime}	55	14-16	90	1.06	95	<400	<4'	1 thru/direction	Collector	2	2
48	Elk River Rd	US 101	Wagner Ln	Rural			12^{\prime}	45	14-16	541	1.06	573	400-1500	<4'		Collector	3	3
49	Elk River Rd	Wagner Ln	Haiku Ln (MP 5.5)	Rural			12^{\prime}	45	14-16	204	1.06	216	<400	<4'		Collector	2	2
50	Elk River Rd/NF 5325	Haiku Ln (MP 5.5)	County Boundary (Coos)	Rural				45	14-16	141	1.06	149	<400	<4'	No lanes	Collector	2	2
51	Sixes River Rd	US 101	MP 2.0	Rural			12^{\prime}	55	14-16	396	1.05	416	400-1500	<4'	1 thru/direction	Collector	2	3
52	Sixes River Rd	MP 2.0	NF-4600	Rural			12^{\prime}	55	14-16	273	1.05	287	<400	<4'	1 thru/direction	Collector	2	2
53	Airport Rd	US 101	The Airport	Rural			12^{\prime}	45	14-16	170	1.06	180	<400	<4'	1 thru/direction	Collector	2	2
54	Floras Lake Loop Rd	US 101 S	Us 101 N	Rural			12^{\prime}	45	14-16	265	1.06	281	<400	<4'	1 thru/direction	Collector	2	2
55	Floras Lake Rd	Floras Lake Loop Rd	Lakes End Dr	Rural			11^{\prime}	45	14-16	233	1.06	247	<400	<4'	1 thru/direction	Collector	2	2
56	Floras Creek Rd	US 101	Allen Canyon Loop	Rural			12^{\prime}	55	14-16	455	1.05	478	400-1500	<4'	1 thru/direction	Collector	3	3
57	Floras Creek Rd	Allen Canyon Loop	S Fork Flores Creek Rd	Rural			12^{\prime}	55	14-16	126	1.05	132	<400	<4'	No lanes	Collector	2	2
58	Langlois Mountain Rd	US 101	Bethel Creek Rd	Rural			11^{\prime}	45	14-16	145	1.06	154	<400	<4'	1 thru/direction	Collector	2	2
59	Pedrioli Dr	Western Terminus	Ocean View Dr	Urban	No		11^{\prime}	25	14-5	139	1.25	174	750-1500	<4'	1 thru/direction	Collector	2	2
60	Pedrioli Dr	Ocean View Dr	US 101	Rural			11^{\prime}	35	14-6	938	1.25	1173	750-1500	<4'	1 thru/direction	Collector	3	3
61	W Hoffeldt Ln	W Hoffeldt Ln	US 101	Urban	No		11^{\prime}	25	14-5	1812	1.06	1924	1500-3000	<4'	1 thru/direction	Collector	3	3
62	W Hoffeldt Ln	South of Titus Ln	W Hoffeldt Ln	Urban	No		11^{\prime}	25	14-5	315	1.06	334	<400	<4'	1 thru/direction	Collector	2	2
63	Old County Rd	Pacific Terrace Loop	UGB	Urban	No		11^{\prime}	35	14-6	188	1.06	200	<400	<4'	No lanes	Collector	3	3
64	Old County Rd	UGB	Eastern Terminus	Rural			11^{\prime}	35	14-6	188	1.06	200	<400	<4'	No lanes	Collector	3	3
65	Parkview Dr	Vistra Ridge Dr	Eastern Terminus	Urban	No		11^{\prime}	25	14-5	68	1.06	72	<400	<4'	1 thru/direction	Collector	2	2
66	Rainbow Rock Rd	Carpenterville Hwy	Aqua Vista Ln	Urban	No		11^{\prime}	45	14-6	801	1.06	851	750-1500	<4'	1 thru/direction	Collector	4	4
67	Rainbow Rock Rd	Aqua Vista Ln	Carpenterville Hwy	Rural			11^{\prime}	45	14-16	213	1.06	226	<400	<4'	1 thru/direction	Collector	2	2
68	Grizly Mountain Rd	UGB	Eastern Terminus	Rural			11^{\prime}	35	14-6	<400	1.06	<400	<400	<4'	No lanes	Collector	2	2
69	Wedderburn Loop	US 101	Doyle Point Rd	Urban	No			30	14-5	389	1.06	413	<750	$4^{\prime}-6{ }^{\prime}$			2	2
70	Wedderburn Loop	Doyle Point Rd	Old Coast Hwy	Urban	No			30	14-5	389	1.06	413	<750	<4'			2	2
71	Old Coast Hwy	Wedderburn Loop	US 101	Rural				30	$14-5$	337	1.06	358	<400	<4'		Collector	2	2
72	China Mountain Rd	UGB	US 101	Rural				45	14-16	228	1.06	242	<400	<4'		Collector	2	2
73	Cemetery Loop Rd	US 101	US 101	Urban	No			35	14.6	253	1.06	269	<400			Collector	2	2
74	Vista Dr	Gold Run Rd	Old Mill Rd	Urban	No			35	$14-6$	110	1.06	117	<400			Collector	2	2
75	Grassy Knob Rd	US 101	Eastern Terminus	Rural				45	14-16	306	1.06	325	<400	<4'		Collector	2	2

[^0]: 6 | Curry County Transportation System Plan | Kittelson \& Associates, Inc.

[^1]: 8 | Curry County Transportation System Plan | Kittelson \& Associates, Inc.

[^2]: 9 | Curry County Transportation System Plan | Kittelson \& Associates, Inc.

[^3]: 18 | Curry County Transportation System Plan | Kittelson \& Associates, Inc.

